Skip to main content

A Metamodel Based Optimisation Algorithm for Metal Forming Processes

  • Chapter
Book cover Advanced Methods in Material Forming

Summary

Cost saving and product improvement have always been important goals in the metal forming industry. To achieve these goals, metal forming processes need to be optimised. During the last decades, simulation software based on the Finite Element Method (FEM) has significantly contributed to designing feasible processes more easily. More recently, the possibility of coupling FEM to mathematical optimisation algorithms is offering a very promising opportunity to design optimal metal forming processes instead of only feasible ones. However, which optimisation algorithm to use is still not clear.

In this paper, an optimisation algorithm based on metamodelling techniques is proposed for optimising metal forming processes. The algorithm incorporates nonlinear FEM simulations which can be very time consuming to execute. As an illustration of its capabilities, the proposed algorithm is applied to optimise the internal pressure and axial feeding load paths of a hydroforming process. The product formed by the optimised process outperforms products produced by other, arbitrarily selected load paths. These results indicate the high potential of the proposed algorithm for optimising metal forming processes using time consuming FEM simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Castro, C., António, C., Sousa, L., “Optimisation of shape and process parameters in metal forging using genetic algorithms”, International Journal of Materials Processing Technology, Vol. 146, 356–364, 2004.

    Article  Google Scholar 

  • Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K., “Metamodel-assisted evolution strategies”, in Proceedings of the International Conference on Parallel Problem Solving from Nature, 2002.

    Google Scholar 

  • Fourment, L., Do, T., Habbal, A., Bouzaiane, M., “Gradient, non-gradient and hybrid algorithms for optimizing 2D and 3D forging sequences”, in Proceedings of ESAFORM, Cluj-Napoca, Romania, 2005.

    Google Scholar 

  • Haftka, R., Gürdal, Z., Elements of structural optimization, Kluwer academic publishers, Dordrecht, Netherlands, 3rd ed., 1992, ISBN 0-7923-1504-9.

    MATH  Google Scholar 

  • Jansson, T., Optimization of Sheet Metal Forming Processes, Licentiate thesis, Universitet Linköping, Linköping, Sweden, 2002.

    Google Scholar 

  • Jansson, T., Andersson, A., Nilsson, L., “Optimization of draw-in for an automotive sheet metal part – an evaluation using surrogate models and response surfaces”, Journal of Materials Processing Technology, Vol. 159, 426–234, 2005.

    Article  Google Scholar 

  • Kleijnen, J., Sargent, R., “A methodology for fitting and validating metamodels in simulation”, European Journal of Operational Research, Vol. 120, 14–29, 2000.

    Article  MATH  Google Scholar 

  • Kleinermann, J. P., Ponthot, J. P., “Parameter identification and shape/process optimization in metal forming simulation”, Journal of Materials Processing Technology, Vol. 139(1–3), 521–526, 2003.

    Article  Google Scholar 

  • Kleijnen, J., Van Beers, W., “Application-driven sequential designs for simulation experiments: Kriging metamodelling”, European Journal of Operational Research, submitted in 2004.

    Google Scholar 

  • Koehler, J., Owen, A., Handbook of Statistics, chap. Computer Experiments, 261–308, Elsevier Science, New York, USA, 1996.

    Google Scholar 

  • Lin, Z., Juchen, X., Xinyun, W., Guoan, H., “Optimization of die profile for improving die life in the hot extrusion process”, Journal of Materials Processing Technology, Vol. 142(3), 659–664, 2003.

    Article  Google Scholar 

  • Lophaven, S., Nielsen, H., Søndergaard, J., “Aspects of the MATLAB Toolbox DACE”, Technical Report IMM-REP-2002-13, Technical University of Denmark – Department of Informatics and Mathematical Modelling, Lyngby, Denmark, 2002.

    Google Scholar 

  • Lophaven, S., Nielsen, H., Søndergaard, J., “DACE – A MATLAB Kriging Toolbox”, Technical Report IMM-TR-2002-12, Technical University of Denmark – Department of Informatics and Mathematical Modelling, Lyngby, Denmark, 2002.

    Google Scholar 

  • Martin, J., Simpson, T., “A study on the use of Kriging models to approximate deterministic computer models”, in Proceedings of the ASME Design Engineering Technical Conferences DETC, 2003.

    Google Scholar 

  • McKay, M., Beckman, R., Conover, W., “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code”, Technometrics, Vol. 21, 239–245, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • Myers, R., Montgomery, D., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., New York, USA, 2nd ed., 2002, ISBN 0-471-41255-4.

    Google Scholar 

  • Naceur, H., Guo, Y. Q., Batoz, J. L., Knopf-Lenoir, C., “Optimization of drawbead restraining forces and drawbead design in sheet metal forming process”, International Journal of Mechanical Sciences, Vol. 43(10), 2407–2434, 2001.

    Article  MATH  Google Scholar 

  • Naceur, H., Ben-Elechi, S., Knopf-Lenoir, C., Batoz, J., “Response surface methodology for the design of sheet metal forming parameters to control springback effects using the inverse approach”, in Proceedings of NUMIFORM, Columbus OH, USA, 2004.

    Google Scholar 

  • Nielsen, H., “DACE, A MATLAB Kriging toolbox”, http://www.imm.dtu.dk/ hbn/dace/.

    Google Scholar 

  • Papalambros, P. Y., Wilde, D. J., Principles of optimal design, Cambridge University Press, New York, USA, 2000, ISBN 0-521-62727.

    MATH  Google Scholar 

  • Sacks, J., Schiller, S., Welch, W., “Design for computer experiments”, Technometrics, Vol. 31, 41–47, 1989.

    Article  MathSciNet  Google Scholar 

  • Sacks, J., Welch, W., Mitchell, T., Wynn, H., “Design and analysis of computer experiments”, Statistical Science, Vol. 4, 409–423, 1989.

    MATH  MathSciNet  Google Scholar 

  • Santner, T., Williams, B., Notz, W., The Design and Analysis of Computer Experiments, Springer-Verlag, New York, USA, 2003, ISBN 0-387-95420-1.

    MATH  Google Scholar 

  • Schenk, O., Hillmann, M., “Optimal design of metal forming die surfaces with evolution strategies”, Computers and Structures, Vol. 82, 1695–1705, 2004.

    Article  Google Scholar 

  • Simpson, T., Peplinski, J., Koch, P., Allen, J., “Metamodels for computer-based engineering design: Survey and recommendations”, Engineering with Computers, Vol. 17, 129–150, 2001.

    Article  MATH  Google Scholar 

  • van Beers, W., Kleijnen, J., “Kriging interpolation in simulation: A survey”, in R. Ingalls, M. Rossetti, J. Smith, B. Peters, eds., Proceedings of the 2004 Winter Simulation Conference, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonte, M., van den Boogaard, A., Huétink, J. (2007). A Metamodel Based Optimisation Algorithm for Metal Forming Processes. In: Advanced Methods in Material Forming. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69845-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-69845-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69844-9

  • Online ISBN: 978-3-540-69845-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics