Advertisement

Reactions of Ketones with Low-Valent Lanthanides: Isolation and Reactivity of Lanthanide Ketyl and Ketone Dianion Complexes

  • Zhaomin Hou
  • Yasuo Wakatsuki
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 2)

Abstract

Recent progress in the chemistry of structurally well-defined lanthanide ketyl and ketone dianion complexes is reviewed, with particular emphasis on the ligand effects on the reactivity of these complexes. It has been demonstrated that the stability and reactivity of the ketyl radical and ketone dianion species strongly depend on the steric and electronic properties of the ancillary ligands, the structure of their parent ketones, as well as the nature of the metals to which they are bound. Fine-tuning these factors can control the reactivity of these species. Generation and reactions of dianionic thioketone and imine species are also briefly described.

Keywords

Ketyl radicals Ketone dianions Lanthanides pinacol coupling Ligand effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For some reviews on lanthanide-mediated organic synthesis, see (a) Molander GA, Harris CR (1996) Chem Rev 96:307CrossRefGoogle Scholar
  2. 1. (b)
    Molander GA (1992) Chem Rev 92:26CrossRefGoogle Scholar
  3. 1. (c)
    Molander GA (1991) Samarium and ytterbium reagents. In: Trost BM, Fleming I, Schreiber S (eds) Comprehensive organic synthesis, vol 1. Pergamon, Oxford, p251Google Scholar
  4. 1. (d)
    Imamoto T (1991) Organocerium reagents. In: Trost BM, Fleming I, Schreiber S (eds) Comprehensive organic synthesis, vol 1. Pergamon, Oxford, p 231Google Scholar
  5. 1. (e)
    Kagan HB, Namy JL (1986) Tetrahedron 42:6573CrossRefGoogle Scholar
  6. 2.
    Imamoto T (1994) Lanthanides in organic synthesis. Academic Press, LondonGoogle Scholar
  7. 3.
    For examples of the formation and reactions of other metal ketyl and ketone dianion speices, see: (a) Wirth T (1996) Angew Chem Int Ed Engl 35:61CrossRefGoogle Scholar
  8. 3. (b)
    Fürstner A, Bogdanovic B (1996) Angew Chem Int Ed Engl 35:2442CrossRefGoogle Scholar
  9. 3. (c)
    Huffman JW (1991) Reduction of C=X to CHXH by dissolving metals and related methods. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 8. Pergamon, Oxford, p107Google Scholar
  10. 3. (d)
    Robertson GM (1991) Pinacol coupling reactions. In: Trost BM, Fleming I, Pattenden G (eds) Comprehensive organic synthesis, vol 3. Pergamon, Oxford, p563Google Scholar
  11. 3. (e)
    McMurry JE (1989) Chem Rev 89:1513CrossRefGoogle Scholar
  12. 3. (f)
    Kahn BE, Riecke RT (1988) Chem Rev 88:733CrossRefGoogle Scholar
  13. 3. (g)
    Pradhan SK (1986) Tetrahedron 42:6351CrossRefGoogle Scholar
  14. 4.
    For a spectroscopic study of in situ generated lanthanide ketyl species, see Hirota N, Weissman SI (1964) J Am Chem Soc 86:2538CrossRefGoogle Scholar
  15. 5.
    For a recent overview on metal ketyl complexes, see Hou Z, Wakatsuki Y (1997) Chem Eur J 3:105CrossRefGoogle Scholar
  16. 6.
    Hou Z, Miyano T, Yamazaki H, Wakatsuki Y (1995) J Am Chem Soc 117:4421CrossRefGoogle Scholar
  17. 7.
    Hou Z, Fujita A, Zhang Y, Miyano T, Yamazaki H, Wakatsuki Y (1998) J Am Chem Soc 120:754CrossRefGoogle Scholar
  18. 8. (a)
    Hou Z, Zhang Y, Wakatsuki Y (1997) Bull Chem Soc Jpn 70:149CrossRefGoogle Scholar
  19. 8. (b)
    Hou Z, Wakatsuki Y (1994) J Chem Soc Chem Commun 1205Google Scholar
  20. 9.
    Hou Z, Wakatsuki Y (1995) J Synth Org Chem Jpn 53:906Google Scholar
  21. 10.
    Hou Z, Zhang Y, Yoshimura T, Wakatsuki Y (1997) Organometallics 16:2963CrossRefGoogle Scholar
  22. 11. (a)
    Neumann WP, Schroeder B, Ziebarth M ( 1975) Liebigs Ann Chem 2279Google Scholar
  23. 11. (b)
    Ziebarth M, Newmann WP (1978) Liebigs Ann Chem 1765Google Scholar
  24. 12.
    Neumann WP, Uzick W, Zarkadis AK (1986) J Am Chem Soc 108:3762CrossRefGoogle Scholar
  25. 13.
    Covert KJ, Wolczanski PT, Hill SA, Krusic PJ (1992) Inorg Chem 31:66CrossRefGoogle Scholar
  26. 14.
    Nolan SP, Stern D, Marks TJ (1989) J Am Chem Soc 111:7844CrossRefGoogle Scholar
  27. 15.
    Hou Z, Jia X, Wakatsuki Y (1997) Angew Chem Int Ed Engl 36:1292CrossRefGoogle Scholar
  28. 16. (a)
    Takats J (private communication). See also Takats J (1997) J Alloys Compd 249:51Google Scholar
  29. 16. (b)
    Clegg W, Eaborn C, Izod K, O’Shaughnessy P, Smith JD (1997) Angew Chem Int Ed Engl 36:2815.CrossRefGoogle Scholar
  30. 17.
    Hou Z, Fujita A, Yamazaki H, Wakatsuki Y (1996) J Am Chem Soc 118:7843CrossRefGoogle Scholar
  31. 18.
    Hou Z, Takamine K, Fujiwara Y, Taniguchi H (1987) Chem Lett 2601Google Scholar
  32. 19.
    Hou Z, Takamine K, Aoki O, Shiraishi H, Fujiwara Y, Taniguchi H (1988) J Chem Soc Chem Commun 668Google Scholar
  33. 20.
    Hou Z, Takamine K, Aoki O, Shiraishi H, Fujiwara Y, Taniguchi H (1988) J Org Chem 53:6077CrossRefGoogle Scholar
  34. 21.
    Hou Z, Yamazaki H, Fujiwara Y, Taniguchi H (1992) Organometallics 11:2711CrossRefGoogle Scholar
  35. 22.
    Yoshimura T, Hou Z, Wakatsuki Y (1995) Organometallics 14:5382CrossRefGoogle Scholar
  36. 23.
    Bogdanovic B, Kruger C, Wermeckes B (1980) Angew Chem Int Ed Engl 19:817CrossRefGoogle Scholar
  37. 24.
    Hou Z, Yamazaki H, Kobayashi K, Fujiwara Y, Taniguchi H (1992) J Chem Soc Chem Commun 722Google Scholar
  38. 25.
    Hou Z, Fujita A, Yamazaki H, Wakatsuki Y (1998) Chem Commun 669Google Scholar
  39. 26.
    Fleischer EB, Sung N, Hawkinson S (1968) J Phy Chem 72:4311CrossRefGoogle Scholar
  40. 27.
    Hou Z, Yoshimura T, Wakatsuki Y (1994) J Am Chem Soc 116:11,169CrossRefGoogle Scholar
  41. 28.
    cf. Eo(Sm3+/Sm2+)=-1.55 V, Eo(Yb3+/Yb2+)=-1.15 V in aqueous mediumGoogle Scholar
  42. 29.
    Sm(II) is ca. 0.14 Å bigger than Yb(II) in radius when both have the same coordination number. See Shannon RD (1976) Acta Crystallogr Sect A 32:751CrossRefGoogle Scholar
  43. 30.
    For examples of Birch reductions, see: Mander LN (1991) Partial reduction of aromatic rings by dissolving metals and by other methods. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 8. Pergamon, Oxford, p489 and references cited thereinGoogle Scholar
  44. 31. (a)
    Makioka Y, Uebori S, Tsuno M, Taniguchi Y, Takaki K, Fujiwara Y (1996) J Org Chem 61:372CrossRefGoogle Scholar
  45. 31. (b)
    Makioka Y, Uebori S. Tsuno M, Taniguchi Y, Takaki K, Fujiwara Y (1994) Chem Lett 611Google Scholar
  46. 32.
    Makioka Y, Taniguchi Y, Fujiwara Y, Takaki K, Hou Z, Wakatsuki Y (1997) Organometallics 15:5476CrossRefGoogle Scholar
  47. 33.
    Takaki K, Tanaka S, Fujiwara Y (1991) Chem Lett 493Google Scholar
  48. 34.
    Makioka Y, Saiki A, Takaki K, Taniguchi Y, Kitamura T, Fujiwara Y (1997) Chem Lett 27Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Zhaomin Hou
    • 1
  • Yasuo Wakatsuki
    • 1
  1. 1.The Institute of Physical and Chemical Research (RIKEN)SaitamaJapan Yasuo Wakatsuki

Personalised recommendations