Skip to main content

Biotransformations with Peroxidases

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((4143,volume 63))

Abstract

Enzymes are chiral catalysts and are able to produce optically active molecules from prochiral or racemic substrates by catalytic asymmetric induction. One of the major challenges in organic synthesis is the development of environmentally acceptable chemical processes for the preparation of enantiomerically pure compounds, which are of increasing importance as pharmaceuticals and agrochemicals. Enzymes meet this challenge! For example, a variety of peroxidases effectively catalyze numerous selective oxidations of electron-rich substrates, which include the hydroxylation of arenes, the oxyfunctionalizations of phenols and aromatic amines, the epoxidation and halogenation of olefins, the oxygenation of heteroatoms and the enantioselective reduction of racemic hydroperoxides. In this review, we summarize the important advances achieved in the last few years on peroxidase-catalyzed transformations, with major emphasis on preparative applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faber K (1997) Biotransformations in organic chemistry, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Schreier P (1997) Enzymes and flavour biotechnology. In: Berger (ed) RG Biotechnology of aroma compounds. Springer Berlin, Heidelberg New York, p 51

    Chapter  Google Scholar 

  3. Drauz K, Waldmann H (1995) Enzmye catalysis in organic synthesis. VCH, Weinheim

    Google Scholar 

  4. Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, New York

    Google Scholar 

  5. Poppe L, Novák L (1992) Selective biocatalysis. A synthetic approach. VCH, Weinheim

    Google Scholar 

  6. Roberts SM, Wiggins K, Casy G (1992) Preparative biotransformations. Whole cell and isolated enzymes in organic synthesis. Wiley, Chichester

    Google Scholar 

  7. Flohé L (1979) CIBA Foundation Symposium 65:95

    Google Scholar 

  8. de Boer E, van Kooyk Y, Tromp MGM, Plat H, Wever R (1986) Biochim Biophys Acta 869:48

    Google Scholar 

  9. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) FEBS Lett 169:247

    Article  CAS  Google Scholar 

  10. Dolin MI (1957) J Biol Chem 225:557

    CAS  Google Scholar 

  11. Bach A, Chodat R (1903) Chem Ber 36:600

    Google Scholar 

  12. Schonbaum GR, Chance B (1976) Catalase. In: Boyer PD (ed) The enzymes. Academic Press, New York, p 363

    Google Scholar 

  13. Bosshard HR, Anni H, Yonetani T (1991) Yeast cytochrome c peroxidase. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, p51

    Google Scholar 

  14. Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. ACS symposium series 389. American Chemical Society, Washington, D. C., p 127

    Google Scholar 

  15. Thomas JA, Morris DR, Hager LP (1970) J Biol Chem 245:3135

    CAS  Google Scholar 

  16. Griffin BW (1991) Chloroperoxidase: A review. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, p 85

    Google Scholar 

  17. Harrison JE, Schultz J (1976) J Biol Chem 251:1371

    CAS  Google Scholar 

  18. Dugad LB, La Mar GN, Lee HC, Ikeda-Saito M, Booth KS, Caughey WS (1990) J Biol Chem 265:7173

    CAS  Google Scholar 

  19. Zeng J, Fenna RE (1992) J Mol Biol 226:185

    Article  CAS  Google Scholar 

  20. Paul KG, Ohlsson PI (1978) Acta Chem Scand B32:395

    Article  CAS  Google Scholar 

  21. Pruitt KM, Tenovuo JO (1985) The lactoperoxidase system. Chemistry and biological significance. Marcel Dekker, New York

    Google Scholar 

  22. Schönbein CF (1856) Verh Nat Ges Basel 1:467

    Google Scholar 

  23. Willstätter R, Stoll A (1919) Ann Chem 416:21

    Google Scholar 

  24. Dunford HB (1991) Horseradish peroxidase: structure and kinetic properties. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, p 1

    Google Scholar 

  25. Dawson JH (1988) Science 240:433

    Article  CAS  Google Scholar 

  26. Anni H, Yonetani T (1992) Mechanism of action of peroxidases. In: Sigel H, Sigel (eds) A Metal ions in biological systems: degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York, p 219

    Google Scholar 

  27. Oritz de Montellano PR (1992) Annu Rev Pharmacol Toxicol 32:89

    Google Scholar 

  28. van Deurzen MPJ, van Rantwijk F, Sheldon RA (1997) Tetrahedron 53:13,183

    Google Scholar 

  29. Whitaker JR (1972) Principles of enzymology for the food sciences. Marcel Dekker, New York, p 591

    Google Scholar 

  30. Yokota K, Yamazaki I (1977) Biochem 16:1913

    Article  CAS  Google Scholar 

  31. Deisseroth A, Dounce AL (1970) Physiol Rev 50:319

    CAS  Google Scholar 

  32. Chance B, Sies H, Boveris A (1979) Physiol Rev 59:527

    CAS  Google Scholar 

  33. Oritz de Montellano PR, Grab LA (1987) Biochem 26:5310

    Article  Google Scholar 

  34. Kobayashi S, Nakano M, Kimura T, Schaap AP (1987) Biochem 26:5019

    Article  CAS  Google Scholar 

  35. Kobayashi S, Nakano M, Goto T, Kimura T, Schaap AP (1986) Biochem Biophys Res Commun 135:166

    Article  CAS  Google Scholar 

  36. Ricard J, Job D (1974) EurJ Biochem 44:359

    Article  CAS  Google Scholar 

  37. Smith AM, Morrison WL, Milham PJ (1982) Biochem 21:4414

    Article  CAS  Google Scholar 

  38. Nakajima R, Yamazaki I (1979) J Biol Chem 254:872

    CAS  Google Scholar 

  39. Grambow HJ (1982) Z Naturforsch Teil 37 c:884

    Google Scholar 

  40. Mottley C, Mason RP (1986) J Biol Chem 261:16,860

    CAS  Google Scholar 

  41. Campa A, Nassi L, Cilento G (1984) Photochem Photobiol 40:127

    CAS  Google Scholar 

  42. Halliwell B, de Rycker J (1978) Photochem Photobiol 28:757

    CAS  Google Scholar 

  43. Mason HS, Onopryenko I, Buhler DR (1957) Biochim Biophys Acta 24:225

    Article  CAS  Google Scholar 

  44. Mason HS (1957) Proc Int Symp Enzyme Chem 2:224

    Google Scholar 

  45. Buhler DR, Mason HS (1961) Arch Biochem Biophys 92:424

    Article  CAS  Google Scholar 

  46. Daly JW, Jerina DM (1970) Biophys Biochim Acta 208:340

    CAS  Google Scholar 

  47. Nilsson R, Pick FM, Bray RC (1969) Biochim Biophys Acta 192:145

    CAS  Google Scholar 

  48. Courteix A, Bergel A (1995) Enzyme Microb Technol 17:1087

    Article  CAS  Google Scholar 

  49. Courteix A, Bergel A (1995) Enzyme Microb Technol 17:1094

    Article  CAS  Google Scholar 

  50. Cilento G (1984) Pure Appl Chem 56:1179

    CAS  Google Scholar 

  51. Cilento G (1988) Stud Org Chem 33:435

    CAS  Google Scholar 

  52. Cilento G, Adam W (1995) Free Rad Biol Med 19:103

    Article  CAS  Google Scholar 

  53. Adam W, Baader WJ, Cilento G (1986) Biochim Biophys Acta 881:330

    CAS  Google Scholar 

  54. Adam W, Cilento G (1982) Chemical and biological generation of electronically excited states. Academic Press, New York

    Google Scholar 

  55. Adam W, Cilento G (1983) Angew Chem Int Ed Engl 22:529

    Article  Google Scholar 

  56. Johnson RA, Sharpless KB (1993) Catalytic asymmetric epoxidation of allylic alcohols. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, Weinheim, p 103

    Google Scholar 

  57. Adam W, Richter MJ (1994) Acc Chem Res 27:57

    Article  CAS  Google Scholar 

  58. Shum WPS, Saxton RJ, Zajacek JG (1997) US Patent 5,663,384

    Google Scholar 

  59. Adam W, Hoch U, Saha-Möller CR, Schreier P (1993) Angew Chem Int Ed Engl 32:1737

    Article  Google Scholar 

  60. Ojima I (1993) Catalytic asymmetric synthesis. VCH, Weinheim

    Google Scholar 

  61. Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley Interscience Press, New York

    Google Scholar 

  62. Datcheva VK, Kiss K, Solomon L, Kyler KS (1991) J Am Chem Soc 113:270

    Article  CAS  Google Scholar 

  63. Scheller G, Jäger E, Hoffmann B, Schmitt M, Schreier P (1995) J Agric Food Chem 43:1768

    Article  CAS  Google Scholar 

  64. Dussault P, Sahli A (1990) Tetrahedron Lett 31:5117

    Article  CAS  Google Scholar 

  65. Dussault P, Lee IQ, Kreifels SJ (1991) J Org Chem 56:4087

    Article  CAS  Google Scholar 

  66. Baba N, Mimura M, Hiratake J, Uchida K, Oda J (1988) Agric Biol Chem 52:2685

    CAS  Google Scholar 

  67. Baba N, Tateno K, Iwasa J, Oda J (1990) Agric Biol Chem 54:3349

    CAS  Google Scholar 

  68. Fu H, Kondo H, Ichkawa Y, Look GC, Wong CH (1992) J Org Chem 57:7265

    Article  CAS  Google Scholar 

  69. Hoch U, Adam W, Fell R, Saha-Möller CR, Schreier P (1997) J Mol Catal A: Chemical 117:321

    Article  CAS  Google Scholar 

  70. Adam W, Hoch U, Lazarus M, Saha-Möller CR, Schreier P (1995) J Am Chem Soc 117:11,898

    CAS  Google Scholar 

  71. Höft E, Hamann HJ, Kunath A, Adam W, Hoch U, Saha-Möller CR, Schreier P (1995) Tetrahedron: Asymmetry 6:603

    Article  Google Scholar 

  72. Hoch U, Scheller G, Schmitt M, Schreier P, Adam W, Saha-Möller CR (1995) Enzymes in synthetic organic chemistry: selective oxidoreductions catalyzed by the metalloenzymes lipoxygenase and peroxidase. In: Werner H, Sundermeyer J (eds) Stereoselective reactions of metal-activated molecules, 2nd Symposium. Vieweg, Braunschweig, p 33

    Google Scholar 

  73. Adam W, Korb MN (1997) Tetrahedron: Asymmetry 8:1131

    Article  CAS  Google Scholar 

  74. Adam, W, Fell RT, Hoch U, Saha-Möller CR, Schreier P (1995) Tetrahedron: Asymmetry 6:1047

    Article  CAS  Google Scholar 

  75. Adam W, Mock-Knoblauch C, Saha-Möller CR (1997) Tetrahedron: Asymmetry 8:1947

    Article  CAS  Google Scholar 

  76. Adam W, Hoch U, Humpf HU, Saha-Möller CR, Schreier P (1996) Chem Commun 2701

    Google Scholar 

  77. Hoch U, Humpf HU, Schreier P, Saha-Möller CR, Adam W (1997) Chirality 9:69

    Article  CAS  Google Scholar 

  78. Schmidt K (1997) Diploma thesis, University of Würzburg

    Google Scholar 

  79. Weichold O (1996) Diploma thesis, University of Würzburg

    Google Scholar 

  80. Häring D, Herderich M, Schüler E, Withopf B, Schreier P (1997) Tetrahedron: Asymmetry 8:853

    Article  Google Scholar 

  81. Schüler E, Häring D, Boss B, Herderich M, Schreier P, Adam W, Mock-Knoblauch C, Renz M, Saha-Möller CR, Weichold O (1998) The potential of selenium-containing peroxidases in asymmetric catalysis: glutathione peroxidase and seleno subtilisin. In: Werner H, Schreier P (eds) Selective reactions of metal-activated molecules. Proceedings of the 3rd international symposium SFB 347. Vieweg, Braunschweig, p 35

    Google Scholar 

  82. Shine WE, Stumpf PK (1974) Arch Biochem Biophys 162:147

    Article  CAS  Google Scholar 

  83. Kajiwara T, Matsui K, Akakabe Y (1996) Biogeneration of flavor compounds via edible seaweeds. In: Takeoka GR, Teranishi R, Williams PJ, Kobayashi A (eds) Biotechnology for improved foods and flavours. ACS symposium series 637. American Chemical Society, Washington, D.C., p 146

    Google Scholar 

  84. Adam W, Lazarus M, Saha-Möller CR, Schreier P (1996) Tetrahedron: Asymmetry 7:2287

    Article  CAS  Google Scholar 

  85. Klibanov AM, Berman Z, Alberti BN (1981) J Am Chem Soc 103:6263

    Article  CAS  Google Scholar 

  86. Dordick JS, Klibanov AM, Marletta MA (1986) Biochem 25:2946

    Article  CAS  Google Scholar 

  87. Schmall MW, Gorman LS, Dordick JS (1989) Biochim Biophys Acta 999:267

    CAS  Google Scholar 

  88. Akasaka R, Mashino T, Hirobe M (1995) Bioorg Med Chem Lett 5:1861

    Article  CAS  Google Scholar 

  89. Fujimoto S, Ishimitsu S, Hirayama S, Kawakami N, Ohara A (1991) Chem Pharm Bull 39:1598

    CAS  Google Scholar 

  90. Booth H, Saunders BC (1956) J Chem Soc 940

    Google Scholar 

  91. Hughes GMK, Saunders BC (1954) J Chem Soc 4630

    Google Scholar 

  92. Scott AI (1965) Quart Rev 19:1

    Article  CAS  Google Scholar 

  93. Pugh CEM, Raper HS (1927) Biochem J 21:1370

    CAS  Google Scholar 

  94. Willstätter R, Heiss H (1923) Ann Chem 433:17

    Google Scholar 

  95. Hathway DE (1957) Biochem J 67:445

    CAS  Google Scholar 

  96. Saunders BC, Holmes-Siedle AG, Stark BP (1964) Peroxidase. Butterworths, London

    Google Scholar 

  97. Sizer IW (1953) Adv Enzymol 14:2089

    Google Scholar 

  98. Gross AJ, Sizer IW (1959) J Biol Chem 234:1611

    CAS  Google Scholar 

  99. Harkin JM (1960) Experienta 16:80

    Article  CAS  Google Scholar 

  100. Freudenberg K, Harkin JM, Reichert M, Fukuzumi T (1958) Ber 91:581

    Article  CAS  Google Scholar 

  101. Erdtman H (1933) Biochem Z 258:177

    Google Scholar 

  102. Westerfeld WW, Lowe C (1942) J Biol Chem 145:463

    CAS  Google Scholar 

  103. Dunford HB, Stillman JS (1976) Coord Chem Rev 19:187

    Article  CAS  Google Scholar 

  104. Dunford HB, Adeniran AJ (1986) Arch Biochem Biophys 251:536

    Article  CAS  Google Scholar 

  105. Frew JE, Jones P (1984) Structure and functional properties of peroxidases and catalases. In: Sykes G (ed) Advances in inorganic and bioinorganic mechanisms. Academic Press, New York, p 175

    Google Scholar 

  106. Sakurada J, Sekiguchi R, Sata K, Hosoya T (1990) Biochem 29:4093

    Article  CAS  Google Scholar 

  107. Casella L, Poli S, Gullotti M, Selvaggini C, Beringhelli T, Marchesini A (1994) Biochem 33:6377

    Article  CAS  Google Scholar 

  108. Pietkäinen P, Adlercreutz P (1990) Appl Microbiol Biotechnol 33:455

    Google Scholar 

  109. Sawahata T, Neal RA (1982) Biochem Biophys Res Commun 109:988

    Article  CAS  Google Scholar 

  110. Krawczyk AR, Lipkowska E, Wróbel JT (1991) Collect Czech Chem Commun 56:1147

    Article  CAS  Google Scholar 

  111. Kobayashi A, Koguchi Y, Kanzaki H, Kajiyama SI, Kawazu K (1994) Biosci Biotech Biochem 58:133

    Article  CAS  Google Scholar 

  112. Kobayashi S, Kaneko I, Uyama H (1992) Chem Lett 393

    Google Scholar 

  113. Pieper DH, Winkler R, Sandermann H (1992) Angew Chem Int Ed Engl 31:68

    Article  Google Scholar 

  114. Donelly DMX, Murphy FG, Polonski J, Prangé T (1987) J Chem Soc Perkin Trans I 2719

    Google Scholar 

  115. Goodbody AE, Endo T, Vukovic J, Kutney JP, Choi LSL, Misawa M (1988) Planta Med 136

    Google Scholar 

  116. d’Ischia M, Napolitano A, Tsiakas K, Prota G (1990) Tetrahedron 46:5789

    Article  CAS  Google Scholar 

  117. Fukunishi K, Kitada K, Naito I (1991) Synthesis 237

    Google Scholar 

  118. Setälä H, Pajunen A, Kilpeläinen I, Brunow G (1994) J Chem Soc Perkin Trans I 1163

    Google Scholar 

  119. Brown BR, Bocks SM (1963) Some new enzymic reactions of phenols. In: Pridham JB (ed) Enzyme chemistry of phenolic compounds. Pergamon Press, Oxford, p 129

    Google Scholar 

  120. Holland HL (1992) Organic synthesis with oxidative enzymes. VCH, New York, p 341

    Google Scholar 

  121. Sridhar M, Vadivel SK, Bhalerao UT (1997) Tetrahedron Lett 38:5695

    Article  CAS  Google Scholar 

  122. Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Science 275:362

    Article  CAS  Google Scholar 

  123. Dordick JS, Marletta MA, Klibanov AM (1987) Biotechnol Bioeng 30:31

    Article  CAS  Google Scholar 

  124. Ryu K, Stafford DR, Dordick JS (1989) Peroxidase-catalyzed polymerization of phenols. In: Whitaker JR, Sonnet PE, (eds) Biocatalysis in agricultural biotechnology. American Chemical Society, Washington, D.C., p 141

    Google Scholar 

  125. Klibanov AM, Alberti BN, Morris ED, Felshin LM (1980) J App Biochem 2:414

    CAS  Google Scholar 

  126. Klibanov AM, Tu TM, Scott KP (1983) Science 221:259

    Article  CAS  Google Scholar 

  127. Pokora AR, Stolfo JJ (1992) US Pat 5,110,740

    Google Scholar 

  128. Besse P, Veschambre H (1994) Tetrahedron 50:8885

    Article  CAS  Google Scholar 

  129. Jacobsen EN (1993) Asymmetric catalytic epoxidation of unfunctionalized olefins. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, Weinheim, p 159

    Google Scholar 

  130. Colonna S, Gaggero N, Casella L, Carrea G, Pasta P (1993) Tetrahedron: Asymmetry 4:1325.

    Article  CAS  Google Scholar 

  131. Dexter AF, Lakner FJ, Campbell RA, Hager LP (1995) J AmChemSoc 117:6412

    CAS  Google Scholar 

  132. Allain EJ, Hager LP, Deng L, Jacobsen EN (1993) J Am Chem Soc 115:4415

    Article  CAS  Google Scholar 

  133. Zaks A, Dodds DR (1995) J Am Chem Soc 117:10,419

    Article  CAS  Google Scholar 

  134. Lakner FJ, Hager LP (1996) J Org Chem 61:3923

    Article  CAS  Google Scholar 

  135. Lakner FJ, Cain KP, Hager LP (1997) J Am Chem Soc 119:443

    Article  CAS  Google Scholar 

  136. Rao AB, Rao MV (1994) Tetrahedron Lett 35:279

    Article  CAS  Google Scholar 

  137. McCarthy MB, White RE (1983) J Biol Chem 258:9153

    CAS  Google Scholar 

  138. Liu KKC, Wong CH (1992) J Org Chem 57:3748

    Article  CAS  Google Scholar 

  139. Fang JM, Lin CH, Bradshaw CW, Wong CH (1995) J Chem Soc Perkin Trans I 967

    Google Scholar 

  140. Coughlin P, Roberts S, Rush C, Willetts A (1993) Biotech Lett 15:907

    Article  CAS  Google Scholar 

  141. Fukuzawa A, Aye M, Murai A (1990) Chem Lett 1579

    Google Scholar 

  142. Fukuzawa A, Takasugi Y, Murai A, Nakamura M, Tamura M (1992) Tetrahedron Lett 33:2017

    Article  CAS  Google Scholar 

  143. Franssen MCR, van der Plas HC (1987) Bioorg Chem 15:59

    Article  CAS  Google Scholar 

  144. van der Plas HC, Franssen MCR, Jansma JD, van Boven HG (1987) Eur Congr Biotechnol 2:202

    Google Scholar 

  145. Franssen MCR, Weijnen JGJ, Vincken JP, Laane C, van der Plas HC (1988) Biocatalysis 1:205

    CAS  Google Scholar 

  146. Renganathan V, Miki K, Gold MH (1987) Biochemistry 26:5127

    Article  CAS  Google Scholar 

  147. DeBoer E, Plat H, Wever R (1987) Algal vanadium(V)-bromoperoxidase. A halogenating enzyme retaining full activity in apolar solvent systems. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, p 317

    Google Scholar 

  148. Franssen MCR, Weijnen JGJ, Vincken JP, Laane C, van der Plas HC (1987) Haloperoxidase in reversed micelles: use in organic synthesis and optimisation of the system. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, p289

    Google Scholar 

  149. Itoh N, Izumi Y, Yamada H (1987) Biochemistry 26:282

    Article  CAS  Google Scholar 

  150. Itahara T, Ide N (1987) Chem Lett 2311

    Google Scholar 

  151. Franssen MCR, van Boven HG, van der Plas HC (1987) J Heterocyclic Chem 24:1313

    Article  CAS  Google Scholar 

  152. Corbett MD, Corbett BR (1985) Biochem Arch 1:115

    CAS  Google Scholar 

  153. Doerge DR, Corbett MD (1991) Chem Res Toxicol 4:556

    Article  CAS  Google Scholar 

  154. Vagujfalvi D, Petz-Stifter M (1982) Phytochem 21:1533

    Article  CAS  Google Scholar 

  155. Kirner S, van Pée KH (1994) Angew Chem Int Ed Engl 33:352

    Article  Google Scholar 

  156. Mata EG (1996) Phosphorus, Sulfur and Silicon 117:231

    Article  CAS  Google Scholar 

  157. Kagan HB (1993) Asymmetric oxidation of sulfides. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, Weinheim, p 203

    Google Scholar 

  158. Colonna S, Gaggero N, Carrea G, Pasta P (1992) J Chem Soc Chem Commun 357

    Google Scholar 

  159. Ozaki SI, Ortiz de Montellano PR (1995) J Am Chem Soc 117:7056

    Article  CAS  Google Scholar 

  160. Fu H, Kondo H, Ichikawa Y, Look GC, Wong CH (1992) J Org Chem 57:7265

    Article  CAS  Google Scholar 

  161. Colonna S, Gaggero N, Casella L, Carrea G, Pasta P (1992) Tetrahedron: Asymmetry 3:95

    Article  CAS  Google Scholar 

  162. Colonna S, Gaggero N, Carrea G, Pasta P (1994) Tetrahedron Lett 35:9103

    Article  CAS  Google Scholar 

  163. Ozaki SI, Ortiz de Montellano PR (1994) J Am Chem Soc 116:4487

    Article  CAS  Google Scholar 

  164. Colonna S, Gaggero N, Manfredi A (1990) Biochemistry 29:10,465

    Article  CAS  Google Scholar 

  165. Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M (1988) J Chem Soc Chem Commun 1451

    Google Scholar 

  166. Colonna S, Gaggero N, Carrea G, Pasta P (1997) J Chem Soc Chem Commun 439

    Google Scholar 

  167. Schmidt MM, Schüler E, Braun M, Häring D, Schreiner P (1998) Tetrahedron Lett 39:2945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adam, W. et al. (1999). Biotransformations with Peroxidases. In: Faber, K. (eds) Biotransformations. Advances in Biochemical Engineering/Biotechnology, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69791-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-69791-8_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64496-5

  • Online ISBN: 978-3-540-69791-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics