Skip to main content

Simplification A General Constraint Propagation Technique for Propositional and Modal Tableaux

  • Conference paper
  • First Online:
Book cover Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1397))

Abstract

Tableau and sequent calculi are the basis for most popular interactive theorem provers for formal verification. Yet, when it comes to automatic proof search, tableaux are often slower than Davis-Putnam, SAT procedures or other techniques. This is partly due to the absence of a bivalence principle (viz. the cut-rule) but there is another source of inefficiency: the lack of constraint propagation mechanisms.

This paper proposes an innovation in this direction: the rule of simplification, which plays for tableaux the role of subsumption for resolution and of unit for the Davis-Putnam procedure.

The simplicity and generality of simplification make possible its extension in a uniform way from propositional logic to a wide range of modal logics. This technique gives an unifying view of a number of tableaux-like calculi such as DPLL, KE, HARP, hyper-tableaux, BCP, KSAT.

We show its practical impact with experimental results for random 3-SAT and the industrial IFIP benchmarks for hardware verification.

An comprehensive review of the various results on simplification, including the first order case can be found in [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baaz and C. Fermüller. Non-elementary speedups between different versions of tableaux. In Proc. of the 4th Workshop on Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918, pages 217–230. Springer-Verlag, 1995.

    Google Scholar 

  2. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper tableaux. In Proc. JELIA-96, LNAI 1126, pages 1–17. Springer-Verlag, 1996.

    Google Scholar 

  3. B. Beckert. Semantic tableaux with equality. Journal of Logic and Computation, 7(1):38–58, 1997.

    Article  MathSciNet  Google Scholar 

  4. B. Beckert and J. Possega. leanTAP: Lean tableau-based deduction. JAR, 15(3):339–358, 1995.

    Article  MATH  Google Scholar 

  5. L. J. Claesen, editor. Formal VLSI Correctness Verification: VLSI Design Methods, volume II. Elsevier Science, 1990.

    Google Scholar 

  6. J. Crawford and L. Auton. Experimental results on the crossover point in satisfiability problems. In Proc. of the 11th National Conference on Artificial Intelligence (AAAI-93), pages 21–27. AAAI Press/The MIT Press, 1993.

    Google Scholar 

  7. M. D’Agostino and M. Mondadori. The taming of the cut. JLC, 4(3):285–319, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Davis, G. Longemann, and D. Loveland. A machine program for theorem-proving. Comm. of the ACM, 5(7):394–397, 1962.

    Article  MATH  Google Scholar 

  9. M. Davis and H. Putnam. A computing procedure for quantificational theory. JACM, 7(3):201–215, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.

    Google Scholar 

  11. M. Fitting. First Order Logic and Automated Theorem Proving. Springer-Verlag, 1990.

    Google Scholar 

  12. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propositional decision procedures-the case study of modal K. In Proc. CADE-96, LNAI 1104, pages 583–597. Springer-Verlag, 1996.

    Google Scholar 

  13. M. Gordon and T. Melham. Introduction to HOL. Cambridge University Press, 1993.

    Google Scholar 

  14. J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge and belief. AIJ, 54:319–379, 1992.

    MATH  MathSciNet  Google Scholar 

  15. J. Harrison. Binary decision diagrams as a HOL derived rule. The Computer Journal, 38:162–170, 1995.

    Article  MathSciNet  Google Scholar 

  16. U. Hustadt and R. Schmidt. On evaluating decision procedure for modal logic. In Proc. of IJCAI-97, 1997.

    Google Scholar 

  17. R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule into connection tableau calculi. JAR, 13(3):297–337, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Massacci. Simplification with renaming: A general proof technique for tableau and sequent-based provers. Tech. Rep. 424, Computer Laboratory, Univ. of Cambridge (UK), 1997.

    Google Scholar 

  19. D. McAllester, Truth maintenance. In Proc. of AAAI-90, pages 1109–1116, 1990.

    Google Scholar 

  20. N. V. Murray and E. Rosenthal. On the computational intractability of analytic tableau methods. Bulletin of the IGPL, 2(2):205–228, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Oppacher and E. Suen. HARP: a tableau-based theorem prover. JAR, 4:69–100, 1988.

    MathSciNet  Google Scholar 

  22. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

    MATH  Google Scholar 

  23. D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  24. W. Quine. Methods of Logic. Harvard Univ. Press, iv ed., 1983.

    Google Scholar 

  25. J. A. Robinson. A machine oriented logic based on the resolution principle. JACM, 12(1):23–41, 1965.

    Article  MATH  Google Scholar 

  26. J. Rushby. Automated deduction and formal methods. In Proc. of CAV-96, LNCS 1102, pages 169–183. Springer-Verlag, 1996.

    Google Scholar 

  27. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability problems. In Proc. of AAAI-92, 1992.

    Google Scholar 

  28. R. M. Smullyan. First Order Logic. Springer-Verlag, 1968. Republished by Dover, 1995.

    Google Scholar 

  29. T. Uribe and M. E. Stickel. Ordered binary decision diagrams and the Davis-Putnam procedure. In Proc. of the 1st Internat. Conf. on Constraints in Computational Logics, LNCS 845, Springer-Verlag, 1994.

    Chapter  Google Scholar 

  30. A. Urquhart. The complexity of propositional proofs. Bull. of Symbolic Logic, 1(4):425–467, Dec 1995.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Voronkov. The anatomy of vampire (implementing bottom-up procedures with code trees). JAR, 15(2):237–265, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  32. K. Wallace and G. Wrightson. Regressive merging in model elimination tableau-based theorem provers. Bull. of the IGPL, 3(6):921–937, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Zhang and M. E. Stickel. An efficient algorithm for unit-propagation. In Proc. of AI-MATH-96, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Massacci, F. (1998). Simplification A General Constraint Propagation Technique for Propositional and Modal Tableaux. In: de Swart, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1998. Lecture Notes in Computer Science(), vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69778-0_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-69778-0_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64406-4

  • Online ISBN: 978-3-540-69778-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics