Skip to main content

Combustion Enhancement by Active Control

  • Chapter
  • First Online:
Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

  • 1742 Accesses

Abstract

Active control has many potential applications in the domain of combustion. Active instability control has been successfully demonstrated in a variety of laboratory combustors and its practical use is currently being explored. Active control methods also appear to be suited to the optimization of combustion system operation. The external controller may be used for example to extend the stability margin of the system, reduce the pollutant emission levels, augment the combustion and thermal efficiency, or modify the temperature distribution in the exhaust gases. This article describes applications of active control towards improving combustion, with specific attention paid to pollutant emissions reduction. Some background material on active combustion control is given, along with a discussion of strategies for NOx reduction, and a review of experiments on flame interactions with external perturbations. The possibilities for active management of the reactive region are described. Applications of active control are illustrated by typical results obtained in recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M. G., Butler, C. T., Johnson, S. A., Lo, E. Y., & Russo, F. (1993): An imaging neural network combustion control system for utility boiler applications. Comb. Flame, 94, 205–214.

    Article  Google Scholar 

  • Baillot, F., Bourehla, A. & Durox, D. (1996): The characteristics method and cusped flame fronts. Combust Sci. and Tech., 112, 327–350.

    Article  Google Scholar 

  • Baillot, F., Durox, D., & Prud’homme, R. (1992): Experimental and theoretical study of a premixed vibrating flame. Comb. Flame, 88, 149–168.

    Article  Google Scholar 

  • Barrère, M. & Williams, F. A. (1968): Comparison of combustion instabilities found in various types of combustion chambers. Eleventh Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Beer, J. M. (1994): Minimizing NOx emissions from stationary combustion: reaction engineering methodology. Chem. Eng. Sci., 49, 4067–4083.

    Article  Google Scholar 

  • Billoud, G., Galland, M. A., Huu, C. H., & Candel, S. (1992): Adaptive active control of combustion instabilities. Combust. Sci. and Tech., 81, 257–283.

    Article  Google Scholar 

  • Bloxsidge, G., Dowling, A., Hooper, N., & Langhorne, P. (1987): Active control of reheat buzz. In 25th Aerospace Sciences Meeting. AIAA.

    Google Scholar 

  • Boyer, L. & Quinard, J. (1990): On the dynamics of anchored flames. Comb. Flame, 82, 51–65.

    Article  Google Scholar 

  • Brouwer, J., Ault, B., Bobrow, J. E., & Samuelsen, G. S. (1990): Active control for gas turbine combustors. In Twenty-Third Symposium (International) on Combustion, (pp. 1087–1092). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Brown, G. L. & Roshko, A. (1974): On density effects and large structures in turbulent mixing layers. J. Fluid Mech., 64, 775–816.

    Article  ADS  Google Scholar 

  • Burkhardt, H. (1996): Image analysis and control of combustion processes. In Active Combustion Control for Propulsion Systems, AGARD Workshop. Athens, Greece.

    Google Scholar 

  • Burkhardt, H., Oest, L., & Tao, W. (1995): Vision-guided flame control. In SENSOR 95, Nürnberg, Germany.

    Google Scholar 

  • Cambray, P. & Joulin, G. (1994): Length-scales of wrinkling of weakly-forced, unstable premixed flames. Combust. Sci. and Tech., 97, 405–428.

    Article  Google Scholar 

  • Candel, S. (1992): Combustion instabilities coupled by pressure waves and their active control. In Twenty-Fourth Symposium (International) on Combustion, (pp. 1277–1296). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Chao, Y.-C. & Jeng, M.-S. (1992): Behavior of the lifted jet flame under acoustic excitation. In Twenty-Fourth Symposium (International) on Combustion, (pp. 333–340). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Charon, O., Jouvaud, D., & Genies, B. (1993): Pulsated 02/fuel flame as a new technique for low NOx emission. Combust. Sci. and Tech., 93, 211–222.

    Article  Google Scholar 

  • Clavin, P., Kim, J. S., & Williams, F. A. (1994): Turbulence-induced noise effects on high-frequency combustion instabilities. Combust. Sci. and Tech., 96, 61–84.

    Article  Google Scholar 

  • Crocco, L. & Cheng, S. L. (1956): Theory of combustion instability in liquid propellent rocket motors. In AGARDOGRAPH 8. NATO, Buttersworth Science Publication.

    Google Scholar 

  • Crow, S. C. & Champagne, F. H. (1971): Orderly structure in jet turbulence. J. Fluid Mech., 48, 547–591.

    Article  ADS  Google Scholar 

  • Culick, F. E. C. (1988): Combustion instabilities in liquid-fueled propulsion systems. An overview. In AGARD Conference. NATO.

    Google Scholar 

  • Davis, M. R. & Lin, L. H. (1995): Structures induced by periodic acoustic excitation of a diffusion flame. Comb. Flame, 100, 101–110.

    Article  Google Scholar 

  • Davis, M. R. &, Jumppanen, P. C. (1993): Optical detection of the response of a diffusion flame to excitation. Comb. Flame, 93, 349–374.

    Article  Google Scholar 

  • De Sœte, G. (1964): Etude des flammes vibrantes: Application à la combustion turbulente. Revue de l’Institut Français du Pétrole & Annale des combustibles liquides. 19(6), June.

    Google Scholar 

  • Delabroy, O., Haile, E., Candel, S., Pollard, A., Sobiesiak, A, & Becker, H. A. (1997): Passive and active control of NOx in industrial burners. To appear in Exp. Thermal & Fluid Sci, special volume reporting on Workshop on Flow Control, Cargèse, Corsica.

    Google Scholar 

  • Delabroy, O., Haile, E., Veynante, D., Lacas, F., & Candel, S. (1996): Réduction de la production des oxydes d’azote (NO X) dans une flamme de diffusion à fioul par excitation acoustique. Rev. Gén. Therm. Fr., 35, 475–489.

    Article  Google Scholar 

  • Delabroy, O., Lacas, F., Poinsot, T., Candel, S., Hoffmann, T., Hermann, J., Gleis, S., & Vbrtmeyer, D. (1995): A study of NOx reduction by acoustic excitation in a liquid fueled burner. Comb. Sci. and Tech., 119, 397–417.

    Article  Google Scholar 

  • Drake, M. C. & Blint, R. J. (1989): Thermal NOx in stretched laminar opposed flow diffusion flames with CO/H2/N2 fuel. Comb. Flame, 76, 151–167.

    Article  Google Scholar 

  • Durox, D., Baillot, F., Searby, G., & Boyer, L. (1996): On the shape of flames under strong acceleration: a mean flow controlled by the unsteady flow. Submitted to J. Fluid Mech.

    Google Scholar 

  • Durox, D., Schulz, B. & Rudent, P. (1995): Sensitivity of premixed flames submitted to sinusoidal excitation. In Joint Meeting of the French and German Sections of the Combustion Institute. Mulhouse, France.

    Google Scholar 

  • Ffowcs Williams, J. E. (1984): Anti-sound. Proc. Roy. Soc. London, Series A, 395, 63–88.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M. (1994): Interactive control of turbulent boundary layers: a futuristic overview. AIAA J., 32(9), 1753–1765.

    Article  ADS  Google Scholar 

  • Gulati, A. & Mani, R. (1992): Active control of unsteady combustion-induced oscillations. J. Prop, and Power, 8(5), 1109–1115.

    Article  Google Scholar 

  • Gutmark, E., Parr, T. P., Hanson-Parr, D. M., & Schadow, K. C. (1989): Azimuthal structure of an annular diffusion flame. Comb. Flame, 75, 229–240.

    Article  Google Scholar 

  • Gutmark, E., Parr, T. P., Hanson-Parr, D. M., & Schadow, K. C. (1989): On the role of large and small-scale structures in combustion, control. Comb. Sci. and Tech., 66, 107–126.

    Article  Google Scholar 

  • Gutmark, E., Parr, T. P., Hanson-Parr, D. M., & Schadow, K. C. (1990): Use of chemiluminescence and neural networks in active combustion control. In Twenty-Third Symposium (International) on Combustion, (pp. 1101–1106). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Gutmark, E., Parr, T. P., Hanson-Parr, D. M., & Schadow, K. C. (1991): Closed-loop amplitude modulation control of reacting premised turbulent jet. AIAA J., 29(12), 2155–2162.

    Article  ADS  Google Scholar 

  • Gutmark, E., Parr, T. P., Parr, D. M., & Schadow, K. C. (1994): Control of sooty high energy fuel combustion. In 1994 Spring Meeting of the Western States Section. The Combustion Institute.

    Google Scholar 

  • Gutmark, E., Parr, T. P., Parr, D. M., & Schadow, K. C. (1989): Stabilization of combustion by controlling the turbulent shear now structure. In 7 th Syrrvp. on Turbulent Shear Flows. Stanford Univ., CA.

    Google Scholar 

  • Haile, E., Delabroy, O., Lacas, F., & Candel, S. (1996): Structure of an acoustically forced turbulent spray fiame. In Twenty-Sixth Symposium (International) on Combustion. The Combustion Institute, Pitts-

    Google Scholar 

  • Haile, E., Lacas, F., & Candel, S. (1997): Active combustion control through pulsed liquid fuel injection. Submitted to C. R. Acad. Sci. Paris.

    Google Scholar 

  • Hantschk, C, Hermann, J., & Vortmeyer, D. (1996): Active instability control with direct drive servo-valves in liquid-fueled combustion systems. In Twenty-Sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Harrje, D. T. & Reardon, F. H. (1972): Liquid propellant rocket instability. Technical Report SP-194, NASA.

    Google Scholar 

  • Hayhurst, A. & Vince, I. M. (1983): The origin and nature of prompt nitric oxide in names. Comb. Flame, 50, 41–57.

    Article  Google Scholar 

  • Heckl, M. A. (1985): Active control of the noise from a Rijke tube. In Comte-Bellot, G. & Ffowcs-Williams, J. E. (Eds.), Aero-and Hydro-acoustics, (pp. 211–216). IUTAM, Springer.

    Google Scholar 

  • Hermann, J., Gleis, S., & Vortmeyer, D. (1996): Active instability control (AIC) of spray combustors by modulation of the liquid fuel flow rate. Comb. Sci. and Tech., 118, 1–25.

    Article  Google Scholar 

  • Ho, C. M. & Huang, L. S. (1982): Subharmonics and vortex merging in mixing layers. J. Fluid Mech., 119, 443–473.

    Article  ADS  Google Scholar 

  • Keller, J. O., Bramlette, T. T., Barr, P. K., & Alvarez, J. R. (1994): NOx and CO emissions from a pulse combustor operating in a lean premixed mode. Comb. Flame, 99, 460–466.

    Article  Google Scholar 

  • Keller, J. O., Bramlette, T. T., Westbrook, C. K., & Dec, J. E. (1988): Pulse combustion: the quantification of characteristic times. Sandia Report SAND87-8832, Sandia National Laboratories.

    Google Scholar 

  • Keller, J. O., Dec, J. E., Westbrook, C. K., & Bramlette, T. T. (1987): Pulse combustion: the importance of characteristic times. Technical Report SAND87-8783, Sandia National Laboratories.

    Google Scholar 

  • Keller, J. O. & Hongo, I. (1988): Pulse combustion: the mechanisms of NOx production. Technical Report SAND88-8602, Sandia National Laboratories.

    Google Scholar 

  • Kolb, T., Jansohn, P., & Leuckel, W. (1988): Reduction of NOx emission in turbulent combustion by fuel-staging: effects of mixing and stoichiometry in the reduction zone. In Twenty-Second Symposium (International) on Combustion, (pp. 1193–1203). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Lang, W. (1991): Harmonic frequency generation by oscillating flames. Comb. Flame, 83, 253–262.

    Article  Google Scholar 

  • Lang, W., Poinsot, T., & Candel, S. (1987): Active control of combustion instability. Comb. Flame, 70, 281–289.

    Article  Google Scholar 

  • Law, C. K. (1988): Dynamics of stretched flames. In Twenty-Second Symposium (International) on Combustion, (pp. 1381–1402). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Le Helley (1995): Etude théorique et expérimentale des instabilités de combustion et de leur controle dans un bruleur laminaire prémélangé. Ph.D. Thesis. Ecole Centrale Paris.

    Google Scholar 

  • Leconte, J. (1858): On the influence of musical sounds on the flame of a jet of coal-gas. Phil. Mag., 15, 235.

    Google Scholar 

  • Lee, J. G., Lee, T. W., Nye, D. A. & Santavicca, D. A. (1995): Lewis number effects on premixed flames interacting with turbulent Karman vortex streets. Comb. Flame, 100, 161–168.

    Article  Google Scholar 

  • Lee, T. W., North, G. L. & Santavicca, D. A. (1993): Surface properties of turbulent premixed propane/air flames at various Lewis numbers. Comb. Flame, 93, 445–456.

    Article  Google Scholar 

  • Longmire, E. K. & Eaton, J. K. (1994): Active open-loop control of particle dispersion in round jets. AIAA J., 32, 555–563.

    Article  ADS  Google Scholar 

  • Lord Rayleigh, J. W. S. (1896): Theory of Sound. MacMillan, London, reproduced by Dover (1945).

    Google Scholar 

  • Lovett, J. A. & Turns, S. R. (1990): Experiments on axisymmetrically pulsed turbulent jet flames. AIAA J., 28(1), 38–46.

    Article  ADS  Google Scholar 

  • Lovett, J. A. & Turns, S. R. (1993): The structure of pulsed turbulent nonpremixed jet flames. Combust. Sei and Tech., 94, 193–217.

    Article  Google Scholar 

  • Lyons, V. J. (1980): Fuel/air nonuniformity-effect on axisymmetrically pulsed turbulent jet flames. AIAA J., 20, 660.

    Article  ADS  Google Scholar 

  • Marble, F. E. (1953): Servo-stabilization of low-frequency oscillations in liquid propellant rocket motors. ZAMP, 6(1), 1–35.

    Article  ADS  Google Scholar 

  • Marble, F. E. & Cox, D. W. (1955): Servo-stabilization of low-frequency oscillations in a liquid bipropellant rocket motor. Am. Rocket Soc. J., 63–81.

    Google Scholar 

  • Markstein, G. H. (1965): Nonsteady flame propagation. In AGARDOGRAPH 75. NATO.

    Google Scholar 

  • McManus, K. R. & Bowman, C. T. (1990): Effects of controlling vortex dynamics on the performance of a dump combustor. In Twenty-Third Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.

    Google Scholar 

  • McManus, K. R., Poinsot, T. & Candel, S. (1993): A review of active control of combustion instabilities. Prog, in Energy and Comb. Sci., 19, 1–29.

    Article  Google Scholar 

  • McManus, K. R., Vandsberger, U., & Bowman, C. (1990): Combustor performance enhancement through direct shear layer excitation. Comb. Flame, 82, 75–92.

    Article  Google Scholar 

  • Menon, S. & Jou, W.-H. (1990): Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor. In 28th Aerospace Sciences Meeting. AIAA Paper 90-0267.

    Google Scholar 

  • Miller, J. A. & Bowman, C. T. (1989): Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci., 15, 287–338.

    Article  Google Scholar 

  • Oster, D. & Wygnanski, I. (1982): The forced mixing layer between parallel streams. J. Fluid Mech., 123, 91–130.

    Article  ADS  Google Scholar 

  • Padmanabhan, K. T., Bowman, C. T., & Powell, J. D. (1995): An adaptive optimal combustion control strategy. Comb. Flame, 100, 101–110.

    Article  Google Scholar 

  • Parekh, D. B., Kibens, V., Glezer, A., Wiltse, J. M., & Smith, D. M. (1996): Innovative jet flow control: mixing enhancement experiments. In 34th Aerospace Sciences Meeting, Reno. AIAA. Paper 96-0308.

    Google Scholar 

  • Peters, N. & Donnerhack, S. (1981): Structure and similarity of nitric oxide production in turbulent diffusion flames. In Eighteenth Symposium (International) on Combustion, (pp. 33–41). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Poinsot, T., Bourienne, F., Candel, S., Esposito, E., & Lang, W. (1989): Suppression of combustion instabilities by active control. J. Propulsion, 5(1), 14–20.

    Article  Google Scholar 

  • Poinsot, T., Trouvé, A., Veynante, D., Candel, S., & Esposito, E. (1987): Vortex driven acoustically coupled combustion instabilities. J. Fluid Mech., 177, 265–292.

    Article  ADS  Google Scholar 

  • Poinsot, T., Veynante, D., & Candel, S. (1990): Diagrams of premised turbulent combustion based on direct simulation. In Twenty-Third Symposium (International) on Combustion, (pp. 613–619). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Pompei, F. & Heywood, J. B. (1972): The role of mixing in burner-generated carbon monoxide and nitric oxide. Comb. Flame, 19, 407.

    Article  Google Scholar 

  • Pont, C, Willis, J. W., Karagozian, A. R., & Smith, O. I. (1996): Effects of external acoustic excitation on enhanced transport in a resonant incinerator. In Twenty-Sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Procter, D. (1994): In Workshop on Pulsating Combustion and Its Application. Technical report.

    Google Scholar 

  • Putnam, A. A. (1971): Combustion driven oscillations in industry. American Elsevier, New York.

    Google Scholar 

  • Reynolds, O. (1894): Phil. Trans. Roy. Soc. A, 186, 123.

    Article  ADS  Google Scholar 

  • Roberts, W. L., Driscoll, J. F., Drake, M. C. & Goss, L. P. (1993): Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion. Comb. Flame, 94, 58–69.

    Article  Google Scholar 

  • Schadow, K. C. & Gutmark, E. (1992): Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci., 18, 117–132.

    Article  Google Scholar 

  • Schadow, K. C, Gutmark, E., & Wilson, K. J. (1992): Active combustion control in a coaxial dump combustor. Comb. Sci. and Tech., 81, 285–300.

    Article  Google Scholar 

  • Searby, G. & Rochwerger, D. (1991): A parametric acoustic instability in premised flames. J. Fluid Mech., 231, 529–543.

    Article  MATH  ADS  Google Scholar 

  • Smith, D. A. & Zukoski, E. E. (1985): Combustion instability sustained by unsteady vortex combustion. In 21st Joint Propulsion Conference. AIAA/SAE/ASME/ASEE.

    Google Scholar 

  • Stansel, D., Laurendeau, N., & Senser, D. (1995): CO and NOx emission from. a controlled-air burner: experimental measurements and exhaust correlations. Comb. Sci. and Tech., 104, 207–234.

    Article  Google Scholar 

  • Stirneman, A., Graf, H. R., & Ziada, S. (1995): Sound reduction potential with different controllers on industrial noise sources. In Applications of active control to the reduction of noise and vibrations. CETIM, Senlis, France.

    Google Scholar 

  • StJohn, D. & Samuelsen, G. S. (1994): Active, optimal control of a model industrial, natural gas-fired burner. In Twenty-Fifth Symposium (International) on Combustion, (pp. 307–316). The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Tang, Y. M., Waldherr, G., Jagoda, J. L, & Zinn, B. T. (1995): Heat release timing; in a nonpremixed Helmholtz pulse combustor. Comb. Flame, 100, 251–261.

    Article  Google Scholar 

  • Thévenin, D. & Candel, S. (1995): Ignition dynamics of a diffusion flame rolled up in a vortex. Phys. Fluids A., 7(2), 434–445.

    Article  MATH  ADS  Google Scholar 

  • Tœpler, A. (1866): Vibroskopische Beobachtungen über die Schwingungensphasen singender Flammen (der chemischen Harmonica) mit Benutzung des Schliere-napparates. Pogg. Ann. Phys. Ghem., 128, 126–139.

    Article  Google Scholar 

  • Trouvé, A., Candel, S., & Daily, J. W. (1988): Linear stability of the inlet jet in a ramjet dump combustor. In 26th Aerospace Science Meeting, Reno. AIAA.

    Google Scholar 

  • Tsien, H. S. (1952): Servo-stabilization of combustion in rocket motors. Am. Rocket Soc. J., 22, 256–263.

    Google Scholar 

  • Tyndall, J. (1867): Sound. LonGhians, London.

    Google Scholar 

  • Vermeulen, P. J., Odgers, J., & Ramesh, V. (1982): Acoustic control of dilution-air mixing in a gas-turbine combustor. Trans. ASME, 104-, 844–852.

    Article  Google Scholar 

  • Vranos, A. & Hall, R. J. (1993): Influence of radiative loss on nitric oxide formation in counterflow diffusion flames at high pressure. Comb. Flame, 93, 230–238.

    Article  Google Scholar 

  • Widrow, B. (1970): Adaptive filters. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Willis, J. W., Cadou, C, Mitchell, M., & Karagozian, A. R. (1994): Destruction of liquid and gaseous waste surrogates in an acoustically excited dump combustor. Comb. Flame, 99, 280–287.

    Article  Google Scholar 

  • Wiltse, J. M. & Glezer, A. (1996): Direct high-frequency excitation of turbulence in free shear flows. In 34th Aerospace Sciences Meeting, Reno. AIAA. Paper 96-0309.

    Google Scholar 

  • Yu, K. H., Parr, T. P., Wilson, K. J., Schadow, K. C, & Gutmark, E. J. (1996): Active control of liquid-fueled combustion using periodic vortex-droplet interaction. In Twenty-Sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Yu, K. H., Trouvé, A., & Candel, S. (1991): Combustion enhancement of a pre-mixed flame by acoustic forcing with emphasis on the role of large-scale vortical structures. In 29th Aerospace Sciences Meeting. AIAA Paper 91-0367.

    Google Scholar 

  • Yu, K. H., Trouvé, A., & Daily, J. W. (1987): Low frequency pressure oscillations in a model ramjet combustor. In 24th Combustion Meeting. JANNAF.

    Google Scholar 

  • Zinn, B. T. (1992): Pulse combustion: recent applications and research issues. In Twenty-Fourth Symposium (International) on Combustion, (pp. 1297–1305). The Combustion Institute, Pittsburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haile, E., Delabroy, O., Durox, D., Lacas, F., Candel, S. (1998). Combustion Enhancement by Active Control. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics