Skip to main content

Control of Free Turbulent Shear Flows

  • Chapter
  • First Online:
Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

Abstract

In this chapter major principles, methods and possibilities of control of free turbulent shear flows are explained. In the first part we present and summarise general characteristics of free shear flows and the whys and hows of their manipulation. The subsequent two parts are focussing on the three classical configurations— jets, wakes and mixing layers, where the major and largely established ways of controlling those flows for specific goals and purposes are discussed in some detail. In the fourth part combinations of classical free flows and of free and wall-bounded flows—complex scenarios of growing practical interest—are dealt with. Some of their characteristics are discussed and ways and possibilities for their control are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovich G. N. (1963): The theory of turbulent jets. MIT Press, Cambridge Mass.

    Google Scholar 

  • Ahuja K. K., Burrin R. H. (1984): Control of flow separation by sound. AIAA Paper 84-2298.

    Google Scholar 

  • Armstrong R.R. Jr. (1981): Influence of mach number on coherent structure relevant to jet noise. AIAA Paper 81-4.133.

    Google Scholar 

  • Armstrong R. R., Michalke A., Fuchs H. V. (1977): Coherent structures in jet turbulence and noise. AIAA Journal 15(7), 1011–1017.

    ADS  Google Scholar 

  • Barre S., Quine G, Dussauge J. P. (1994): Compressibility effects on the structure of supersonic mixing layers: experimental results. J. Fluid Mech. 259, 47–78.

    Article  ADS  Google Scholar 

  • Batchelor G. (ed.) (1969): The scientific papers of G. I. Taylor. Vol. II, (Cambridge University Press).

    Google Scholar 

  • Batt R. G. (1975): Some Measurements on the effect of tripping the two-dimensional shear layer. AIAA Journal 13(2), 245–247.

    ADS  Google Scholar 

  • Bechert D.W. (1985): Excitation of instability waves. Z. Flugwiss. Weltraumforschung 9, 56–361.

    Google Scholar 

  • Bechert D. W., Michel U. (1975): The control of a thin free shear layer with and without a semi-infinite plate by a pulsating flow field. Acoustica 33, 287–307.

    MATH  ADS  Google Scholar 

  • Bechert W. D., Pfitzenmeier E. (1976): On the amplification of broadband jet noise by a pure tone excitation. AIAA Paper 76-489.

    Google Scholar 

  • Bechert W. D., Stahl B. (1988): Excitation of instability waves in free shear layers. Part 2, Experiments. J. Fluid Mech. 186, 63pp.

    Google Scholar 

  • Bejan A. (1981): On the buckling property of inviscid jets and the origin of turbulence. Letters in Heat and Mass Transfer 8, 187–194.

    Article  ADS  Google Scholar 

  • Bell J. H., Mehta R. D. (1992): Measurements of streamwise vortical structures in a plane mixing layer. J. Fluid Mech. 239, 213–248.

    Article  ADS  Google Scholar 

  • Berger E., Scholz D., Schumm M. (1990): Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids and Structures 4, 231–257.

    Article  ADS  Google Scholar 

  • Berger E., Wille R. (1972): Periodic flow phenomena. Annual Review of Fluid Mechanics 4, 313–340.

    Article  ADS  Google Scholar 

  • Bernai L.P. (1981): The coherent structure of turbulent mixing layers. I: Similarity of primary vortex structure. II: Secondary streamwise vortex structure. PhD thesis CALTECH.

    Google Scholar 

  • Bernai L. P., Roshko A. (1986): Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499–525.

    Article  ADS  Google Scholar 

  • Birch S., Eggers M. (1972): A critical review of the experimental data for developed free turbulent shear layers. Free Turbulent Shear Flows. NASA SP-321, 11–40.

    Google Scholar 

  • Blümel B. (1993): Computergestützte Strömungssichtbarmachung. Diplomarbeit, Technische Universität Berlin.

    Google Scholar 

  • Boree J., Atassi N., Charnay G. (1996): Phase averaged velocity field in an axisymmetric jet subject to a sudden velocity decrease. Experiments in Fluids 21, 447–456.

    Article  ADS  Google Scholar 

  • Boussinesq J. (1879): Theorie de l’écoulement tourbillant. Me. pre. par. div. Sav. XXIII, Paris.

    Google Scholar 

  • Bradshaw P. (1966): The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26(2), 225–236.

    Article  ADS  Google Scholar 

  • Bremhorst K. Watson R. D. (1981): Velocity field and entrainment of a pulsed core jet. J. Fluid Eng. Trans. ASME 104(4), 605–608.

    Article  Google Scholar 

  • Browand F. K., Ho C.-M. (1983): The mixing layer: an example of quasi two-dimensional turbulence. J. de Mechanique Théorique et Appliquée 99.

    Google Scholar 

  • Brown G.B. (1935): On vortex motion in gaseous jets and the origin of their sensitivity to sound. Phys. Soc. XLVII 4, 703–732.

    Article  ADS  Google Scholar 

  • Brown G. L., Roshko A. (1974): On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64(4), 775–816.

    Article  ADS  Google Scholar 

  • Chandrsuda C., Mehta R. D., Weir A. D., Bradshaw P. (1978): Effect of free-stream turbulence on large structure in turbulent mixing layer. J. Fluid Mech. 85, 693–704.

    Article  ADS  Google Scholar 

  • Coanda H. (1934): Procede et dispositif pour faire devier une veine fluide penetrautre fluids. French Patent 788, 140.

    Google Scholar 

  • Cohen J., Wygnanski I. (1987a): The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191–219.

    Article  ADS  Google Scholar 

  • Cohen J., Wygnanski I. (1987b): The evolution of instabilities in the axisymmetric jet. Part 2: The flow resulting from the interaction between two waves. J. Fluid Mech. 176, 221–235.

    Article  ADS  Google Scholar 

  • Counihan J (1969): An improved method of simulating an atmospheric boundary layer in a windtunnel. Atm. Env., p. 197–214.

    Google Scholar 

  • Crighton D.G. (1981): Jet noise and the effects of jet forcing. In The Role of Coherent Structures in Modelling Turbulence and Mixing, (ed. J. Jimenez), Lecture Notes in Physics 136. (Springer).

    Google Scholar 

  • Crow S. C, Champagne F. H. (1977): Orderly structure in jet turbulence. J. Fluid Mech. 48, 567.

    Google Scholar 

  • Dimotakis P. E. (1991): Turbulent free shear layer mixing and combustion. In High Speed Flight Propulsion Systems, eds. B. Murthy, E. T. Curran. Progress in Astronautics and Aeronautics 137.

    Google Scholar 

  • Dimotakis P. E., Brown G.L. (1976): The mixing layer at high Reynolds number: large structure dynamics and entrainment. J. Fluid Mech. 78(3), 535–560.

    Article  ADS  Google Scholar 

  • Dimotakis P. E., Koochesfahani M.M. (1987): Activ feedback interaction with a shear layer. Ann. Prog. Rept. AFOSR-84-01ss20.

    Google Scholar 

  • Dimotakis P. E., Miake-Lye R. C, Papantoniou D.A. (1982): Structure and dynamics of round turbulent jets. GALCIT Report FM82-01, CALTECH.

    Google Scholar 

  • DiStefano J. J., Stubberud A. R. Williams (1979): “Schaums Outline”—Theory and Problems of Feedback and Control Systems with Applications to the Engineering, Physical and Life Sciences. McGraw Hill.

    Google Scholar 

  • Drazin P. G., Reid W. H. (1981): Hydrodynamic stability. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press.

    Google Scholar 

  • Dubuat (1779): Principes d’hydraulique. Paris.

    Google Scholar 

  • Dziomba B. (1981): Experimentelle Untersuchung zum Einfluss von Anfangs-und Randbedingungen auf die Ausbreitung einer freien zweidimensionalen Scherscbicht. Dissertation, Technische Universität Berlin.

    Google Scholar 

  • Dziomba B., Fiedler H. E. (1985): Effect of initial conditions on two-dimensional free shear layers. J. Fluid Mech. 152, 419–442.

    Article  ADS  Google Scholar 

  • Eickhoff H. (1982): Instability and coherent structures in jet flames. In Recent Contributions to Fluid Mechanics, ed. W. Haase (Springer).

    Google Scholar 

  • Fernholz H.-H. (1993): Management and control of turbulent shear flows. ZAMM 73(11), 287–300.

    Article  MATH  Google Scholar 

  • Fiedler H. E. (1988a): Coherent structures in turbulent flows. Prog. Aerospace Sci. 25, 231–269.

    Article  ADS  Google Scholar 

  • Fiedler H. E., Dziomba B. Mensing P., Rösgen T. (1981): Initiation, evolution and global consequences of coherent structures in turbulent shear flows. In The role of coherent structures in modelling turbulence and mixing, ed. J. Jimenez. Lecture Notes in Physics (Springer).

    Google Scholar 

  • Fiedler H. E., Fernholz H.-H. (1991a): On management and control of turbulent shear flows. Prog. Aerospace Sci. 27, 305–387.

    Article  Google Scholar 

  • Fiedler H. E., Glezer A., Wygnanski I. (1988b): Control of plane mixing layer: Some novel experiments. In: AIAA Series, Current trends in turbulent research 112, 30–64, eds. H. Branover, M. Mond, Y. Ungers.

    Google Scholar 

  • Fiedler H. E., Gründel H., Spieweg R. (1995): Some observations in three-dimensional mixing layers. Proceedings, Indian Institute of Science, Bangalore, India.

    Google Scholar 

  • Fiedler H. E., Kim J.-H., Köpp N. (1991b): The spatially accelerated mixing layer in a tailored pressure gradient. Eur. J. Mech. B/Fluids 10(4), 349–376.

    MATH  Google Scholar 

  • Fiedler H. E., Korschelt D., Mensing P. (1978a): On transport mechanism and structureof scalar field in a heated plane shear layer. In Structure and Mechanisms of Turbulence II, ed. H. E. Fiedler. Lecture Notes in Physics 76, 58–72 (Springer).

    Google Scholar 

  • Fiedler H. E., Lummer M., Nottmeyer K. (1993): The plane mixing layer between parallel streams of different velocities and different densities. Advances in Turbulence, eds. H. Branover, Y. Unger. AIAA Series on Progress in Aeronautics and Astronautics.

    Google Scholar 

  • Fiedler H. E., Mensing P. (1985): The plane turbulent shear layer with periodic excitation. J. Fluid Mech. 150, 281–309.

    Article  ADS  Google Scholar 

  • Fiedler H. E., Nayeri C. N., Spieweg R., Paschereit C. 0. (1997): Three-dimensional mixing layer. Experimental Thermal and Fluid Science, in press.

    Google Scholar 

  • Fiedler H, Thies H. J. (1978b): Some observations in a large two-dimensional shear layer. In Structure and Mechanisms of Turbulence I, ed. H. E. Fiedler. Lecture Notes in Physics 75, 108–771 (Springer).

    Google Scholar 

  • Foss J.F. (1977): The effects of the laminar/turbulent boundary layer state on the development of a plane mixing layer. In Turbulent Shear Flows, proceedings, pp. 11.33–11.42. Pen. State Univ.

    Google Scholar 

  • Fulachier L., Borghi R., Ansehnet F., Parantheon P. (1989): Influence of density variations on the structure of low-speed turbulent flows: A report on EUROMECH 237. J. Fluid Mech. 203, 577–593.

    Article  ADS  Google Scholar 

  • Gad-el-Hak M., Bushnell D. (1991): Separation control: Review. J. Fluids Eng. 113, 5–30.

    Google Scholar 

  • Gaster M., Kit E., Wygnanski I. (1985): Large scale structures in a forced mixing layer. J. Fluid Mech. 150, 23–39.

    Article  ADS  Google Scholar 

  • Giger M. (1987): Der ebene Preistrahl im flachen Wasser. Dr. thesis, ETH Zürich.

    Google Scholar 

  • Gründel H., Fiedler H. E. (1992): The mixing layer between non-parallel streams. European Turbulence Conference (ETC) 4, Delft, 167–171.

    Google Scholar 

  • Gründel H., Spieweg R., Fiedler H. E. (1995): The mixing layer behind.a slanted trailing edge. Advances in Turbulence V, ed. R. Benzi (Kluwer), 171–178.

    Google Scholar 

  • Guicking, D. (1988): Active noise and vibration vontrol. Reference bibliography, 3rd edition, Göttingen.

    Google Scholar 

  • Gurecki D.J. (1981): Effect of modification of the trailing edge of a separating wall on the downstream mixing of parallel flowing streams. MS-thesis, Air Force Institute of Technology, Ohio.

    Google Scholar 

  • Gutmark E., Ho C.-M. (1983a): On a forced elliptic jet. Proc. 4th Turbulence Shear Flow Conf., Karlsruhe, Germany.

    Google Scholar 

  • Gutmark E., Ho C.-M. (1983b): Preferred modes and the spreading rates of jets. Phys. Fluids 26(10), 2932.

    Article  ADS  Google Scholar 

  • Gutmark E., Schadow K. C, Wilson K. J., Parr D.M. (1986): Small scale mixing enhancement in acoustically excited jets. 10th Aeroacoustics Conf., Seattle, Wa. AIAA Paper 86-1885.

    Google Scholar 

  • Gutmark E. J., Schadow K. C., Yu K.H. (1995): Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375–417.

    Article  ADS  Google Scholar 

  • Gyr A. (1997): Effects of polymer additives on the large scale structure of a two-dimensional submerged jet. To appear in Experiments in Fluids.

    Google Scholar 

  • Heine C, Spieß M. C., Möser M., Fiedler. H. E. (1997): The influence of feedback control on the vortex dynamics in a turbulent cylinder wake. Euromech Coll. 361, Technische Universität Berlin.

    Google Scholar 

  • Heskestad G. (1966): Hot-wire measurements in a radial turbulent jet. Trans, of the ASME. J. Appl. Mech. pp. 417–424.

    Google Scholar 

  • Hilberg D. (1993): Die seitlich eng begrenzte Scherschicht. Dissertation, Technische Universität Berlin.

    Google Scholar 

  • Hilberg D. (1996): Repeatedly deflected jets and flames. Unpublished. Hermann-Föttinger-Institut, TU-Berlin.

    Google Scholar 

  • Hilberg D., Fiedler H. E. (1989): The spanwise confined mixing layer. Advances in Turbulence 2, eds. H.-H. Fernholz and H. E. Fiedler (Springer).

    Google Scholar 

  • Ho C.M. (1982a): Local and global dynamics of free shear layers. In Numerical and Physical Aspects of Aerodynamic Flow, Chap. 30, ed. T. Cebeci (Springer).

    Google Scholar 

  • Ho C.M., Gutmark E. (1987): Vortex induction and mass entraiment in a small aspect ratio elliptic jet. J. Fluid Mech. 179, 383–405.

    Article  ADS  Google Scholar 

  • Ho C. M., Huang. L. S. (1982b): Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443–473.

    Article  ADS  Google Scholar 

  • Ho C.-M., Huerre P. (1984): Perturbed free shear layers. Ann. Rev. Fluid Mech. 16, 365–424.

    Article  ADS  Google Scholar 

  • Ho C. M., Nosseir N. (1981): Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119–142.

    Article  ADS  Google Scholar 

  • Huerre P., Monkewitz P. A. (1985): Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151–168.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Huerre P., Monkewitz P. A. (1990): Local and global instablilites in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473–537.

    Article  ADS  MathSciNet  Google Scholar 

  • Huppertz A., Janke G. (1997): Some user results on the control of the flow over a backward forcing step. Euromech Colloquium 361, Technische Universität Berlin.

    Google Scholar 

  • Husain Z. D., Hussain A. K. M. F. (1979): Axisymmetric mixing layer: Influence of the initial and boundary conditions. AIAA Journal 17(1), 48–55.

    ADS  Google Scholar 

  • Husain Z. D., Hussain A. K. M. F. (1983): Controlled excitation of elliptic jets. Phys. Fluids 26(10), 2763–2766.

    Article  ADS  Google Scholar 

  • Husain Z. D., Hussain A. K. M. F. (1995): Experiments on subharmonics in a shear layer. J. Fluid Mech. 304 343–372.

    Article  ADS  Google Scholar 

  • Hussain A. K. M. F., Husain H. S. (1988): Passive and active control of jet turbulence. In: Turbulence management and relaminarization, eds. H. W. Liepmann and R. Narasimha (Springer).

    Google Scholar 

  • Hussain A. K. M. F., Husain H. S., Zaman K. B. M. Q., Tso J., Hayakawa M., TakaKi R., Hasan M. (1986): Free shear flows: organized structures and effects of excitation. AIAA Paper 86-0235.

    Google Scholar 

  • Hussain A. K. M. F., Zedan M. F. (1978a): Effects of initial condition on the axisymmetric free shear layer: Effects of the initial momentum thickness. Phys. Fluids 21, 1100–1111.

    Article  ADS  Google Scholar 

  • Hussain A. K. M. F., Zedan M. F. (1978b): Effects of initial condition on the axisymmetric free shear layer: Effects of initial fluctuation level. Phys. Fluids 21, 18, 434–441.

    Article  Google Scholar 

  • Inoue O. (1992): Double frequency forcing on spatially growing mixing layers. J. Fluid Mech. 234, 553–581.

    Article  MATH  ADS  Google Scholar 

  • Joseph D. D. (1976): Stability of Fluid Motions I and II. Springer Tracts in Natural Philosophy, vols. 27 and 28. (Springer).

    Google Scholar 

  • Keffer F. F., Kawall J. G., Hunt J. C. R., Maxey M.R. (1978): The uniform distortion of thermal and velocity mixing layers. J. Fluid Mech. 86(3), 465–490.

    Article  MATH  ADS  Google Scholar 

  • Kibens V. (1980): Discrete noise spectrum by an acoustically excited jet. AIAA Journal 18, 434–441.

    ADS  Google Scholar 

  • Kibens V. (1989): Jet flows and turbulence control. AIAA Paper 89-105.

    Google Scholar 

  • Kibens V., Wlezien R. W., Kegelman J. T. (1988): Trailing-edge sweep and three dimensional vortex interactions in jets and mixing layers. AGARD CP 438.

    Google Scholar 

  • Koch W. (1985): Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vibr. 99, 53–83.

    Article  ADS  Google Scholar 

  • König O., Fiedler H. E. (1991): The structure of round turbulent jets in counterflow: a flow visualization study. In Advances in Turbulence 3, 61–66, eds. A. V. Johansson and P. H. Alfredsson (Springer).

    Google Scholar 

  • König O., Fiedler H.E. (1995): Some experimental results on a decelerated mixing layer. Advances in Turbulence V, 276–280, ed. R. Benzi (Kluwer).

    Google Scholar 

  • Konrad J. H. (1977): An experimental investigation of mixing in two-dimensional turbulent shear flows with application to diffusion-limited chemical reactions. Ph.D. thesis. CALTECH.

    Google Scholar 

  • Koochesfahani M. M., Frieler C. E. (1987): Inviscid instability characteristics of free shear layers with non-uniform density. AIAA 25th Aerospace Sciences Meeting, Reno, Nevada. AIAA Paper 87-0047.

    Google Scholar 

  • Korschelt D. (1980): Experimentelle Untersuchung zum Wärme-und Stofftransport im turbulenten ebenen Freistrahl mit periodischer Anregung am Düsenaustritt. Dissertation, Technische Universität Berlin.

    Google Scholar 

  • Kumori S., Ueda H. (1985): The large-scale coherent structure in the intermittent region of the self-preserving round free jet. J. Fluid Mech. 152, 337–359.

    Article  ADS  Google Scholar 

  • Kwade M. (1982): Beeinflussung der Turbulenzstruktur in der ebenen Mischungsschicht zweier Ströme durch Polymerzusätze. Rheologica Acta 21, 120–149.

    Article  Google Scholar 

  • Lasheras J. C, Cho J. S., Maxworthy T. (1986): On the origin of streamwise vortical structures in a plane, free shear layer. J. Fluid Mech. 172, 231–258.

    Article  ADS  Google Scholar 

  • Lasheras J. C, Choi H. (1988): Three-dimensional instability of a plane shear layer: an experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech. 189, 53–86.

    Article  ADS  Google Scholar 

  • Laufer J., Monkewitz P.A. (1980): On turbulent jet flow in a new perspective. AIAA Paper 80-0962.

    Google Scholar 

  • Laufer J., Ta-Chun Y. (1983): Noise generation by a low mach number jet. J. Fluid Mech. 134, 1–31.

    Article  ADS  Google Scholar 

  • Leconte J. (1858): On the influence of musical sounds on the flame of a jet of coal-gas. Philos. Magazine J. Sci. XV, 235–239, London, Edinburgh and Dublin.

    Google Scholar 

  • Lee, M. Reynolds W.C. (1985): Bifurcating and blooming jets. Fifth Symposium on Turbulent Shear Flows, pp. 1.7–1.12 (Springer).

    Google Scholar 

  • Lessen M. Paillet F. (1976): Marginal instability of turbulent shearing layers and the break point of a jet. Phys. Fluids 19, 943.

    Article  ADS  Google Scholar 

  • Lu G., Lele S. K. (1994): On the density ratio effect on the growth rate of a compressible mixing layer. Phys. Fluids 6(2), 1073–1075.

    Article  ADS  MathSciNet  Google Scholar 

  • Lummer M. (1989): Numerische Untersuchung der inkompressiblen ebenen Scherschicht zwischen Gasen unterschiedlicher Dichte. Dissertation, Technische Universität Berlin.

    Google Scholar 

  • Luo J. S., Fiedler H.E. (1997): On the evolution of large scale structures in three-dimensional mixing layers. Submitted to J. Fluid Mech.

    Google Scholar 

  • McManus K. R., Poinsot T., Candel S. M. (1993): A Review of Active Control of Combustion Instabilities. Prog. Energy Combust. Sci. 19, 1–29.

    Article  Google Scholar 

  • Michalke A. (1965): On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 343–359.

    Article  MathSciNet  Google Scholar 

  • Michalke A. (1972): The instability of free shear layers. Prog. Aerospace Sci. 12, 213–239.

    Article  ADS  Google Scholar 

  • Michalke A. (1978): On source coherence affecting jet noise. In Structure and Mechanisms of Turbulence II, ed. H. Fiedler, Lecture Notes in Physics 76 171–180 (Springer).

    Google Scholar 

  • Michalke A. (1984): Survey on Jet Instability Theory. Prog. Aerospace Sci. 21, 159–199.

    Article  ADS  Google Scholar 

  • Michalke A. (1990): On the inviscid instability of wall-bounded velocity profiles close to separation. Z. Flugwiss. Weltraumforsch. 14, 24–31.

    Google Scholar 

  • Michalke A., Hermann G. (1982): On the inviscid instability of a circular jet with external flow. J. Fluid Mech. 114, 343–359.

    Article  MATH  ADS  Google Scholar 

  • Michalke A., Wehrmann O. (1964): Akustische Beeinflussung von Freistrahlgrenzschichten. Proc. Intern. Council Aeronaut Sci., Third Congress, Stockhohn, Washington, London, pp. 773–785.

    Google Scholar 

  • Monkewitz P. A. (1989): Feedback Control of Global Oscillations in Fluid Systems. AIAA 2nd Shear Flow Conference, March 13–16, Tempe, Az., AIAA Paper 89-0991.

    Google Scholar 

  • Monkewitz P. A., Bechert D. W., Barsikow B., Lehmann B. (1990): Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611–639.

    Article  ADS  Google Scholar 

  • Monkewitz P. A., Huerre P. (1982): Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25(7), 1137–1143.

    Article  ADS  Google Scholar 

  • Monkewitz P. A., Sohn K. D. (1986): Absolute instability in hot jets and their control. AIAA Paper 86-1882.

    Google Scholar 

  • Morkovin M. V., Paranjape S.V. (1971): On acoustic excitation of shear layers. Z. Flugwiss. 19, 328–335.

    Google Scholar 

  • Morris P.J. (1976): The spatial viscous instability of axisymmetric jets. J. Fluid Mech. 77, 511–529.

    Article  MATH  ADS  Google Scholar 

  • Morris P. J. (1983): Viscous instability of compressible axisymmetric jets. AIAA Journal 21, 481–482.

    Article  ADS  Google Scholar 

  • Nagib H. M., Corke T. C. (1984a): Wind microclimate around buildings: Characteristics and control. J. Wind Eng. Indust. Aero. 16, 1–5.

    Article  Google Scholar 

  • Nagib H. M., Marion A. (1984b): On the design of contractions and settling chambers for optimal turbulence manipulation in wind tunnels. AIAA Paper 85-0536.

    Google Scholar 

  • Nieberle R. (1986): Entwicklung einer Methode der Mustererkennung zur Analyse kohärenter Strukturen und ihre Anwendung im turbulenten Ereistrahl. Fortschrittsberichte VDI, Reihe 7: Strömungsmechanik, Nr. 106 (VDI Verlag).

    Google Scholar 

  • Nishri B., Wygnanski I. (1996): On Flow separation and its control. ECOMASS.

    Google Scholar 

  • Norum, T. D. (1982): Screech suppression in supersonic jets. AIAA Paper 82-0050.

    Google Scholar 

  • Nottmeyer K. (1990): Experimentelle Untersuchung der Ausbildung und Turbulenzstruktur von turbulenten Scherschichten zwischen Gasströmen unterschiedlicher Geschwindigkeit und Dichte. Dissertation, Technische Universität Berlin.

    Google Scholar 

  • Nygaard K. J., Glezer A. (1991): Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer. J. Fluid Mech. 231, 257–301.

    Article  ADS  Google Scholar 

  • Oster D., Wygnanski I. (1982): The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91–130.

    Article  ADS  Google Scholar 

  • Oster D., Wygnanski L, Dziomba B., Fiedler H. E. (1978): On the effect of initial conditions on the two-dimensional turbulent mixing layer. In Structure and Mechanisms of Turbulence I, ed. H. Fiedler. Lecture Notes in Physics 75, 48–64 (Springer).

    Google Scholar 

  • Osthues J. (1986): Experimentelle und theoretische Untersuchungen an einem periodisch schwingenden turbulenten Freistrahl. VDI-Verlag, Reihe 7 (Strömungstechnik), Vol. 105.

    Google Scholar 

  • Parekh D. E., Kibens V., Glezer A., Wiltse J. M., Smith D. M. (1996): Innovative Jet Flow Control: Mixing enhancement experiments. AIAA Paper 96-0308.

    Google Scholar 

  • Paschereit C. O., Fiedler H. E.: The formation and suppression of a three-dimensional structure in a plane shear layer initiated by secondary vortices in the wind tunnel nozzle. Submitted for publication.

    Google Scholar 

  • Paschereit C. O., Oster D., Long T. A., Fiedler H. E., Wygnanski I. (1992): Flow Visualization of Interactions among large coherent structures in a axisymmetric jet. Experiments in Fluids 12, 189–199.

    Article  ADS  Google Scholar 

  • Paschereit C. O., Schüttpelz M., Fiedler H. E. (1989): The mixing layer between non-parallel walls. Advances in Turbulence 2, eds. H.-H. Fernholz and H. E. Fiedler (Springer).

    Google Scholar 

  • Paschereit C. O., Wygnanski L, Fiedler H.E. (1995): Experimental investigation of subharmonic resonance in an axisymmetric jet. J. Fluid Mech. 283 365–407.

    Article  ADS  Google Scholar 

  • Peters N., Williams F.A. (1981): Coherent Structures in Turbulent Combustion. In The Role of Coheren Structures in Modelling Turbulence and Mixing, ed. J. Jimenez (Springer).

    Google Scholar 

  • Peterson R. A. (1978): Influence of Wave Dispersion on Vortex Pairings in a Jet. J. Fluid Mech. 89(3), 469–495.

    Article  ADS  Google Scholar 

  • Peterson R. A., Samet M. M. (1988): On the prefered mode of jet instability. J. Fluid Mech. 194, 153–173.

    Article  ADS  Google Scholar 

  • Plaschko P. (1981): Stochastic model theory for coherent turbulent structures in circular jets. Phys. Fluids 24(2), 187–193.

    Article  MATH  ADS  Google Scholar 

  • Plesniak M. W., Mehta R. D., Johnston J. P. (1994): Curved two-stream turbulent mixing layers: three-dimensional structure and streamwise evolution. J. Fluid Mech. 270, 1–50.

    Article  ADS  Google Scholar 

  • Prandtl L. (1914): Der Luftwiderstand von Kugeln. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse, 177–190.

    Google Scholar 

  • Prandtl L. (1961): Gesammelte Abhandlungen in 3 Teilen, eds. W. Tollmien, H. Schlichting, H. Görtier and F. W. Riegels (Springer).

    Google Scholar 

  • Raghu S., Lehmann B., Monkewitz P. A. (1990): On the mechanism of side-jet generation in periodically excited axisymmetric jets. Third European Turbulence Conference, Stockholm.

    Google Scholar 

  • Rajaratnam N. (1976): Turbulent Jets. Elsevier, Amsterdamm.

    Google Scholar 

  • Rebel J., Grützmacher V., Neuwald P., Ronneberger D. (1992): Towards the control of free shear layers: Accoustic pressure gradient versus vorticity wave. Proc. 14th Aeroacoust. Conf. 949-957, AIAA Paper 92-02-162.

    Google Scholar 

  • Rebollo M.R. (1972): Analytical and experimental investigation of a turbulent mixing layer of different gases in a pressure gradient. PhD Thesis, CALTECH.

    Google Scholar 

  • Reynolds 0. (1883): An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phys. Trans. R. Soc, 174, 935–982, Lond.

    Article  Google Scholar 

  • Riediger S. (1989): The influence of drag reduction additives on the coherent structures in a free shear layer. Advances in Turbulence 2. Proceedings, eds. H.-H. Fernholz, H. E. Fiedler (Springer).

    Google Scholar 

  • Ringleb F.O. (1951): Theory and application of the flow over a cusp. United States Navy, ONR, Contract N6onr-27016, Princeton University, Aeronautical Engineering Laboratory, Report no. 192.

    Google Scholar 

  • Roberts F. A. (1985): Effects of periodic disturbance on structure and mixing in turbulent shear layers and wakes. Ph.D. thesis, CALTECH.

    Google Scholar 

  • Rockwell D., Naudascher E. (1979): Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 67–94.

    Article  ADS  Google Scholar 

  • Roffman G. L., Toda K. (1969): A discussion of the effects of sound on jets and flueric devices. J. Eng. Industry, pp. 1161–1167.

    Google Scholar 

  • Roshko A. (1954): On drag and shedding frequency of two-dimensional bluff bodies. NACA TN-3169.

    Google Scholar 

  • Sabin C. (1963): An analytical and experimental study of the plane, imcompressible, turbulent free shear layer with arbitrary velocity ratio and pressure gradient. Tech. Rep. MD. 9, Stanford Univ., Stanford, California.

    Google Scholar 

  • Scholz D. (1985): Kohärente Wirbelstrukturen im Nachlauf einer ruhenden und einer schwingungserregten Kreisscheibe. Dissertation TU-Berlin.

    Google Scholar 

  • Schowalter D. G., Van Atta C. W., Lasheras J. C (1993): A Study of streamwise vortex structures in a stratified shear layer. J. Fluid Mech. 11, 1–100.

    Google Scholar 

  • Schumm M. (1991): Experimente zum Problem der absoluten und konvektiven Instabilität im Nachlauf zweidimensionaler Körper. Dissertation, Technische Universität Berlin.

    Google Scholar 

  • Scruton C. (1981): An Introduction to wind effects on structures. Engineering design guides 40. Oxford University Press.

    Google Scholar 

  • Seifert A., Bachar T., Koss D., Shepshelovich M., Wygnanski I. (1993a): Oscillatory blowing: a tool to delay boundary-layer separation. AIAA Journal 31(11), 2052–2060.

    ADS  Google Scholar 

  • Seifert A., Daeaby A., Nishri B., Wygnans M I. (1993b): The effects of forced oscillations on the performance of airfoils. AIAA Shear Flow Conference, Orlando, Fla. AIAA Paper 93-3264.

    Google Scholar 

  • Soteriou M. C, Ghoniem A. F. (1995a): Effects of the free-stream density ratio on free and forced spatially developing shear layers. Phys. Fluids 7(8), 2036–2051.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Soteriou M. C, Ghoniem A. F. (1995b): The effect of the inlet boundary conditions on the mixing and burning in the exothermic shear flow. 33rd Aerospace Sciences Meeting and Exhibit, Reno, Nv. AIAA Paper 95-0807.

    Google Scholar 

  • Soteriou M. C, Knio O. M., Ghoniem A.F. (1991): Manipulation of the growth rate of a variable density, spatially developing mixing layer via external modulation. 29th Aerospace Sciences Meeting, Reno, Nevada. AIAA Paper 91-0081.

    Google Scholar 

  • Spieweg R. (1994): Strukturen in turbulenten Scherschichten mit schräger Abströmkante. Diplomarbeit, Technische Universität Berlin.

    Google Scholar 

  • Stone J. P., McKinzie D. J. (1984): Acoustic excitation—a promising new means of controlling shear layers. NASA Technical Memorandum 83772.

    Google Scholar 

  • Strykowski P. J., Niccum D. L. (1991): The stability of countercurrent mixing layers in circular jets. J. Fluid Mech. 227, 309–343.

    Article  ADS  Google Scholar 

  • Strykowski P. J., Sreenivasan K.R. (1990): On the formation and suppression of vortex shedding at low Rexynolds numbers. J. Fluid Mech. 218, 71–107.

    Article  ADS  Google Scholar 

  • Sung H. J., Chun K. B. (1996): Control of Turbulent Recirculation Flows Behind a Backward-Facing Step by Acoustic Pulsations. 2nd International Symposium on Engineering Turbulence Modelling and Measurements, Florence, Italy.

    Google Scholar 

  • Symes C. R., Fink L. E. (1978): Effects of external turbulence upon the flow past cylinders. In Structure and Mechanisms of Turbulence I, ed. H. Fiedler, Lecture Notes in Physics 75. (Springer).

    Google Scholar 

  • Szajner A., Turner J. T. (1987): Coherent structures in a free circular jet surrounded by a pulsed annular jet. Proc. 6th Symp on Turbulent Shear Flows, Toulouse, France.

    Google Scholar 

  • Tanner M. (1989): Calculation of the rate of spread of two-dimensional turbulent mixing layers. Z. Flugwiss. 13(6), 393–398.

    MathSciNet  Google Scholar 

  • Tavoularis S., Corrsin S. (1987): The structure of a turbulent shear layer embedded in turbulence. Phys. Fluids 30(10), 3025–3033.

    Article  ADS  Google Scholar 

  • Toms B. A. (1948): Proc. 11st. Int. Cong. Rheol. 2, 135–141, North Holland, Amsterdam.

    Google Scholar 

  • Tso J. (1983): Coherent structures in a fully developed turbulent axisymmetric jet. PhD thesis, Johns Hopkins University Baltimore.

    Google Scholar 

  • Tso J., Hussain F. (1989): Organized motions in a fully developed turbulent axisymmetric jet. J. Fluid Mech. 203, 425.

    Article  ADS  Google Scholar 

  • Tso J., Kovasznay L. S. G., Hussain A. K. M. F. (1980): Search for Large-Scale Coherent Structures in the Nearly Self-Preserving Region of an Aid-symmetric Turbulent Jet. AIAA Paper 80-1355.

    Google Scholar 

  • Tyndall J. (1867): On the action of sonorous vibrations on gaseous and liquid jets. Philos. Magazine J. of Sci. 33, 375–391, Lond, Edmburg, Dublin.

    Google Scholar 

  • Van Dyke M. (1982): An Album of Fluid Motion. The Parabolic Press. Stanford California.

    Google Scholar 

  • Veynante D., Candel S. M., Martin J. P. (1986): Influence of the system response on the coherent structures in a confined shear layer. Phys. Fluids 29(12), 3912–3914.

    Article  ADS  Google Scholar 

  • Von Karman T.: Collected works.

    Google Scholar 

  • Wang G., Fiedler H. E.: Turbulent mixing in a confined mixing layer. Submitted for publication.

    Google Scholar 

  • Weir A. D., Bradshaw P. (1974): The interaction of two parallel shear layers. Dept. of Aeronaut., Imperial College, London, AR 74.-09.

    Google Scholar 

  • Weisbrot I., Wygnanski I. (1988): On coherent structures in a highly excited mixing layer. J. Fluid Mech. 195, 137–159.

    Article  ADS  Google Scholar 

  • Wygnanski L, Champagne F., Marasli B. (1986): On the large scale structure in two-dimensional small deficit, turbulent wakes. J. Fluid Mech. 168, 31–71.

    Article  ADS  Google Scholar 

  • Wygnanski I., Petersen R.A. (1985): Coherent motion in excited free shear flows. AIAA Shear Flow Control Conference, Boulder.

    Google Scholar 

  • Yajnik K.S., Acharya M. (1977): Non-equilibrium Effects in a Turbulent Boundary Layer due to the Destruction of Large Eddies. In Structure and Mechanisms of Turbulence I, ed. H. Fiedler, Lecture Notes in Physics 75, p. 249–260 (Springer).

    Google Scholar 

  • Yoda M., Fiedler H.E. (1996): The round jet in a uniform counterflow: flow visualization and mean concentration measurements. Experiments in Fluids 21, 427–436.

    Article  ADS  Google Scholar 

  • Zaman K. B. M. Q., Hussain A. K. M. F. (1981): Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133–159

    Article  ADS  Google Scholar 

  • Zhou M. D., Heine C., Wygnanski I. (1996): The effects of excitation on the coherent and random motion in a plane wall jet. J. Fluid Mech. 310, 1–37.

    Article  ADS  MathSciNet  Google Scholar 

  • Ziada S., Rockwell D. (1981): Generation of higher harmonics in a self-oscillating mixing layer-wedge system. Report, Lehigh University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiedler, H.E. (1998). Control of Free Turbulent Shear Flows. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics