Skip to main content

Frontiers of Flow Control

  • Chapter
  • First Online:
Book cover Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

Abstract

In contrast to the first chapter, in the present chapter I shall emphasize the frontiers of the field of flow control, pondering mostly the control of turbulent flows. I shall review the important advances in the field that took place during the past few years and are anticipated to dominate progress in the near future, essentially covering the fifth era outlined in Sect. 2 of the previous chapter. By comparison with laminar flow control or separation prevention, the control of turbulent flow remains a very challenging problem. Flow instabilities magnify quickly near critical flow regimes, and therefore delaying transition or separation are relatively easier tasks. In contrast, classical control strategies are often ineffective for fully turbulent flows. Newer ideas for turbulent flow control to achieve, for example, skin-friction drag reduction focus on the direct onslaught on coherent structures. Spurred by the recent developments in chaos control, microfabrication and soft computing tools, reactive control of turbulent flows, where sensors detect oncoming coherent structures and actuators attempt to favorably modulate those quasi-periodic events, is now in the realm of the possible for future practical devices. In this article, I shall provide estimates for the number, size, frequency and energy consumption of the sensor/actuator arrays needed to control the turbulent boundary layer on a full-scale aircraft or submarine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abergel F., Temam R. (1990): On Some Control Problems in Fluid Mechanics. Theor. Comput. Fluid Dyn. 1, 303–325.

    Article  MATH  Google Scholar 

  • Alshamani K.M.M., Livesey J.L., Edwards F.J. (1982): Excitation of the Wall Region by Sound in Fully Developed Channel Flow. AIAA J. 20, 334–339.

    Article  ADS  Google Scholar 

  • Angell J.B., Terry S.C., Barth P.W. (1983): Silicon Micromechanical Devices. Scientific American 248, April, 44–55.

    Article  ADS  Google Scholar 

  • Antonia R.A., Fulachier L., Krishnamoorthy L.V., Benabid T., Ansehnet F. (1988): Influence of Wall Suction on the Organized Motion in a Turbulent Boundary Layer. J. Fluid Mech. 190, 217–240.

    Article  ADS  Google Scholar 

  • Antsaklis P.J. (1993): Control Theory Approach.. Mathematical Approaches to Neural Networks, ed. J.G. Taylor, (Elsevier, Amsterdam), 1–23.

    Google Scholar 

  • Ashley S. (1996): Getting a Microgrip in the Operating Room. Mechanical Engineering 118, September, 91–93.

    Google Scholar 

  • Aubry N. (1990): Use of Experimental Data for an Efficient Description of Turbulent Plows. Appl Mech. Rev. 43, S240–S245.

    Article  MathSciNet  Google Scholar 

  • Aubry N., Holmes P., Lumley J.L., Stone E. (1988): The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer. J. Fluid Mech. 192, 115–173.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Auerbach D. (1994): Controlling Extended Systems of Chaotic Elements. Phys. Rev. Lett. 72, 1184–1187.

    Article  ADS  Google Scholar 

  • Auerbach D., Grebogi C, Ott E., Yorke J.A. (1992): Controlling Chaos in High Dimensional Systems. Phys. Rev. Lett. 69, 3479–3482.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Bakewell H.P., Lumley J.L. (1967): Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow. Phys. Fluids 10, 1880–1889.

    Article  ADS  Google Scholar 

  • Bandyopadhyay P.R. (1986): Review—Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction. J. Fluids Eng. 108, 127–140.

    Article  Google Scholar 

  • Bandyopadhyay P.R., Breuer K.S., Blechinger C.J. (editors) (1994): Application of Microfabrication to Fluid Mechanics, FED vol. 197, (American Society of Mechanical Engineers, New York).

    Google Scholar 

  • Banks S.P. (1986): Control Systems Engineering (Prentice-Hall International, Englewood Cliffs, New Jersey).

    MATH  Google Scholar 

  • Barnwell R.W., Hussaini M.Y. (editors) (1992): Natural Laminar Flow and Laminar Flow Control (Springer, Berlin).

    Google Scholar 

  • Berkooz G., Fisher M., Psiaki M. (1993): Estimation and Control of Models of the Turbulent Wall Layer. Bul. Am. Phys. Soc. 38, 2197.

    Google Scholar 

  • Berkooz G., Hohnes P., Lumley J.L. (1991): Intermittent Dynamics in Simple Models of the Turbulent Wall Layer. J. Fluid Mech. 230, 75–95.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Blackwelder R.F. (1978): The Bursting Process in Turbulent Boundary Layers. Workshop on Coherent Structure of Turbulent Boundary Layers, eds. C.R. Smith and D.E. Abbott, (Lehigh University, Bethlehem, Pennsylvania), 211–227.

    Google Scholar 

  • Blackwelder R.F. (1988): Coherent Structures Associated with Turbulent Transport. Transport Phenomena in Turbulent Flows, eds. M. Hirata and N. Kasagi, (Hemisphere, New York), 69–88.

    Google Scholar 

  • Blackwelder R.F., Gad-el-Hak M. (1990): Method and Apparatus for Reducing Turbulent Skin Friction. United States Patent No. 4,932,612.

    Google Scholar 

  • Blackwelder R.F., Haritonidis J.H. (1983): Scaling of the Bursting Frequency in Turbulent Boundary Layers. J. Fluid Mech. 132, 87–103.

    Article  ADS  Google Scholar 

  • Blackwelder R.F., Kovasznay L.S.G. (1972): Time-Scales and Correlations in a Turbulent Boundary Layer. Phys. Fluids 15, 1545–1554.

    Article  ADS  Google Scholar 

  • Bouchon-Meunier B., Yager R.R., Zadeh L.A. (editors) (1995a): Fuzzy Logic and Soft Computing (World Scientific, Singapore).

    MATH  Google Scholar 

  • Bouchon-Meunier B., Yager R.R., Zadeh L.A. (editors) (1995b): Advances in Intelligent Computing—IPMU’94, Lecture Notes in Computer Science, vol. 945, (Springer-Verlag, Berlin).

    Google Scholar 

  • Breuer K.S., Bandyopadhyay P.R., Gad-el-Hak M. (editors) (1996): Application of Microfabrication to Fluid Mechanics, DSC-Volume 59, 468 pages, (American Society of Mechanical Engineers, New York).

    Google Scholar 

  • Breuer K.S., Haritonidis J.H., Landahl M.T. (1989): The Control of Transient Disturbances in a Flat Plate Boundary Layer Through. Active Wall Motion. Phys. Fluids A 1, 574–582.

    Article  ADS  Google Scholar 

  • Bushnell D.M. (1983): Turbulent Drag Reduction for External Flows. AIAA Paper No. 83-0227, New York.

    Google Scholar 

  • Bushnell D.M. (1994): Viscous Drag Reduction in Aeronautics. Proceedings of the Nineteenth Congress of the International Council of the Aeronautical Sciences, vol. 1, Paper No. ICAS-94-0.1, (American Institute of Aeronautics and Astronautics, Washington, D.C.), XXXIII-LVL

    Google Scholar 

  • Bushnell D.M., Hefner J.N. (editors) (1990): Viscous Drag Reduction in Boundary Layers, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.).

    Google Scholar 

  • Bushnell D.M., McGinley C.B. (1989): Turbulence Control in Wall Flows, Annu. Rev. Fluid Mech. 21, 1–20.

    Article  ADS  Google Scholar 

  • Bussmann K., Münz H. (1942): Die Stabilität der laminaren Reibungsschicht mit Absaugung. Jahrb. Dtsch. Luftfahrtforschung 1, 36–39.

    Google Scholar 

  • Cantwell B.J. (1981): Organized Motion in Turbulent Flow. Annu. Rev. Fluid Mech. 13, 457–515.

    Article  ADS  Google Scholar 

  • Carlson H.A., Lumley J.J. (1996): Flow over an Obstacle Emerging from the Wall of a Channel. AIAA J. 34, 924–931.

    Article  MATH  ADS  Google Scholar 

  • Chen C.-C., Wolf E.E., Chang H.-C. (1993): Low-Dimensional Spatiotemporal Thermal Dynamics on Nonuniform Catalytic Surfaces. J. Phys. Chemistry 97, 1055–1064.

    Article  Google Scholar 

  • Choi H., Moin P., Kim J. (1992): Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets. Department of Mechanical Engineering Report No. TF-55, Stanford University, Stanford, California.

    Google Scholar 

  • Choi H., Moin P., Kim J. (1994): Active Turbulence Control for Drag Reduction in Wall-Bounded Flows. J. Fluid Mech. 262, 75–110.

    Article  MATH  ADS  Google Scholar 

  • Choi H., Temam R., Moin P., Kim J. (1993): Feedback Control for Unsteady Flow and its Application to the Stochastic Burgers Equation. J. Fluid Mech. 253, 509–543.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Coller B.D., Hohnes P., Lumley J.L. (1994a): Control of Bursting in Boundary Layer Models. Appl. Mech. Rev. 47, S139–S143.

    Article  Google Scholar 

  • Coller B.D., Hohnes P., Lumley J.L. (1994b): Control of Noisy Heteroclinic Cycles. Physica D 7, 135–160.

    Article  ADS  Google Scholar 

  • Corino E.R., Brodkey R.S. (1969): A Visual Investigation of the Wall Region in Turbulent Flow. J. Fluid Mech. 37, 1–30.

    Article  ADS  Google Scholar 

  • Corke T.C., Glauser M.N., Berkooz G. (1994): Utilizing Low-Dimensional Dynamical Systems Models to Guide Control Experiments. Appl. Mech. Rev. 47, S132–S138.

    Article  Google Scholar 

  • Davis L. (editor) (1991) Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York).

    Google Scholar 

  • Deane A.E., Sirovich L. (1991): A Computational Study of Rayleigh-Bénaxd Convection. Part 1. Rayleigh-Number Scaling. J. Fluid Mech. 222, 231–250.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Ditto W.L., Pecora L.M. (1993): Mastering Chaos. Scientific American 269, August, 78–84.

    Google Scholar 

  • Ditto W.L., Rauseo S.N., Spano M.L. (1990): Experimental Control of Chaos. Phys. Rev. Lett. 65, 3211–3214.

    Article  ADS  Google Scholar 

  • Eléna M. (1975): Etude des Champs Dynamiques et Thermiques d’un Ecoulement Turbulent en Conduit avec Aspiration à la Paroi. Thèse de Doctoratés Sciences, Université d’Aix-Marseille, Marseille, Prance.

    Google Scholar 

  • Elena M. (1984): Suction Effects on Turbulence Statistics in a Heated Pipe Flow. Phys. Fluids 27, 861–866.

    Article  ADS  Google Scholar 

  • Falco R.E. (1974): Some Comments on Turbulent Boundary Layer Structure Inferred from the Movements of a Passive Contaminant. AIAA Paper No. 74-99, New York.

    Google Scholar 

  • Falco R.E. (1977): Coherent Motions in the Outer Region of Turbulent Boundary Layers. Phys. Fluids 20, S124–S132.

    Article  ADS  Google Scholar 

  • Falco R.E. (1980): The Production of Turbulence Near a Wall. AIAA Paper No. 80-1356, New York.

    Google Scholar 

  • Falco R.E. (1983): New Results, a Review and Synthesis of the Mechanism of Turbulence Production in Boundary Layers and its Modification. AIAA Paper No. 83-0377, New York.

    Google Scholar 

  • Falco R.E. (1991): A Coherent Structure Model of the Turbulent Boundary Layer and its Ability to Predict Reynolds Number Dependence. Phil. Trans. R. Soc. London A 336, 103–129.

    Article  MATH  ADS  Google Scholar 

  • Faller W.E., Schreck S.J., Luttges M.W. (1994): Real-Time Prediction and Control of Three-Dimensional Unsteady Separated Flow Fields Using Neural Networks. AIAA Paper No. 94-0532, Washington, D.C.

    Google Scholar 

  • Fan X., Hofmann L., Herbert T. (1993): Active Flow Control with Neural Networks. AIAA Paper No. 93-3273, Washington, D.C.

    Google Scholar 

  • Favre A., Dumas R., Verollet E., Coantic M. (1966): Couche Limite Turbulente sur Paroi Poreuse avec Aspiration. J. Mecanique 5, 3–28.

    Google Scholar 

  • Fiedler H.E. (1988): Coherent Structures in Turbulent Flows. Prog. Aerospace Sci. 25, 231–269.

    Article  ADS  Google Scholar 

  • Fiedler H.E., Fernholz H.-H. (1990): On Management and Control of Turbulent Shear Flows. Prog. Aerospace Sci. 27, 305–387.

    Article  MATH  ADS  Google Scholar 

  • Fowler T.B. (1989): Application of Stochastic Control Techniques to Chaotic Nonlinear Systems. IEEE Trans. Autom. Control 34, 201–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Gabriel K.J. (1995): Engineering Microscopic Machines. Scientific American 273, September, 150–153.

    Google Scholar 

  • Gabriel K.J., Jarvis J., Trimmer W. (editors) (1988): Small Machines, Large Opportunities: A Report on the Emerging Field of Microdynamics. National Science Foundation, (AT&T Bell Laboratories, Murray Hill, New Jersey).

    Google Scholar 

  • Gad-el-Hak M. (1989): Flow Control. Appl. Mech. Rev. 42, 261–293.

    Article  Google Scholar 

  • Gad-el-Hak M. (1993): Innovative Control of Turbulent Flows. AIAA Paper No. 93-3268, Washington, D.C.

    Google Scholar 

  • Gad-el-Hak M. (1994): Interactive Control of Turbulent Boundary Layers: A Futuristic Overview. AIAA J. 32, 1753–1765.

    Article  ADS  Google Scholar 

  • Gad-el-Hak M. (1996): Modern Developments in Flow Control. Appl. Mech. Rev. 49, 365–379.

    Article  Google Scholar 

  • Gad-el-Hak M., Bandyopadhyay P.R. (1994): Reynolds Number Effects in Wall-Bounded Flows. Appl. Mech. Rev. 47, 307–365.

    Article  Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1989): Selective Suction for Controlling Bursting Events in a Boundary Layer. AIAA J. 27, 308–314.

    Article  ADS  Google Scholar 

  • Gad-el-Hak M., Bushnell D.M. (1991): Separation Control: Review. J. Fluids Eng. 113, 5–30.

    Article  Google Scholar 

  • Gad-el-Hak M., Hussain A.K.M.F. (1986): Coherent Structures in a Turbulent Boundary Layer. Part 1. Generation of “Artificial” Bursts. Phys. Fluids 29, 2124–2139.

    Article  ADS  Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F., Riley J.J. (1981): On the Growth of Turbulent Regions in Laminar Boundary Layers. J. Fluid Mech. 110, 73–95.

    Article  ADS  Google Scholar 

  • Garfinkel A., Spano M.L., Ditto W.L., Weiss J.N. (1992): Controlling Cardiac Chaos. Science 257, 1230–1235.

    Article  ADS  Google Scholar 

  • Goldberg D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Massachusetts).

    MATH  Google Scholar 

  • Grappin R., Léorat J. (1991): Lyapunov Exponents and the Dimension of Periodic Incompressible Navier-Stokes Flows: Numerical Measurements. J. Fluid Mech. 222, 61–94.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Halsey T.C., Martin J.E. (1993): Electrorheological Fluids. Scientific American 269, October, 58–64.

    Google Scholar 

  • Ho C.-M., Tai Y.-C. (1996): Review: MEMS and Its Applications for Flow Control. J. Fluids Eng. 118, 437–447.

    Article  Google Scholar 

  • Hogan H. (1996): Invasion of the micromachines. New Scientist 29, June, 28–33.

    Google Scholar 

  • Holland J.H. (1992) Adaptation in Natural and Artificial Intelligence (MIT Press, Cambridge, Massachusetts).

    Google Scholar 

  • Hu H.H., Bau H.H. (1994): Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow. Proc. Roy. Soc. Lond. A 447, 299–312.

    Article  MATH  ADS  Google Scholar 

  • Huberman B. (1990): The Control of Chaos. Proc. Workshop on Applications of Chaos, 4–7 December, San Francisco, California.

    Google Scholar 

  • Huberman B.A., Lumer E. (1990): Dynamics of Adaptive Systems. IEEE Trans. Circuits Syst. 37, 547–550.

    Article  Google Scholar 

  • Hübler A., Lüscher E. (1989): Resonant Stimulation and Control of Nonlinear Oscillators. Naturwissenschaften 76, 67–69.

    Article  ADS  Google Scholar 

  • Hussain A.K.M.F. (1986): Coherent Structures and Turbulence. J. Fluid Mech. 173, 303–356.

    Article  ADS  Google Scholar 

  • Iglisch R. (1944): Exakte Berechnung der laminaren Reibungsschicht an der längsangeströmten ebenen Platte mit homogener Absaugung. Schr. Dtsh. Akad, Luftfahrtforschung 8B, 1–51.

    Google Scholar 

  • Jacobs J., James R., Ratliff C., Glazer A. (1993): Turbulent Jets Induced by Surface Actuators. AIAA Paper No. 93-3243, Washington, D.C.

    Google Scholar 

  • Jacobson S.A., Reynolds W.C. (1993a): Active Boundary Layer Control Using Flush-Mounted Surface Actuators. Bul. Am. Phys. Soc. 38, 2197.

    Google Scholar 

  • Jacobson S.A., Reynolds W.C. (1993b): Active Control of Boundary Layer Wall Shear Stress Using Self-Learning Neural Networks. AIAA Paper No. 93-3272, Washington, D.C.

    Google Scholar 

  • Jacobson S.A., Reynolds W.C. (1994): Active Control of Transition and Drag in Boundary Layers. Bul. Am. Phy. Soc. 39, 1894.

    Google Scholar 

  • Jacobson S.A., Reynolds W.C. (1995): An Experimental Investigation Towards the Active Control of Turbulent Boundary Layers. Department of Mechanical Engineering Report No. TF-64, Stanford University, Stanford, California.

    Google Scholar 

  • James R.D., Jacobs J.W., Glezer A. (1994): Experimental Investigation of a Turbulent Jet Produced by an Oscillating Surface Actuator. Appl. Mech. Rev. 47, S127–S1131.

    Article  Google Scholar 

  • Joslin R.D., Erlebacher G., Hussaini M.Y. (1996): Active Control of Instabilities in Laminar Boundary Layers—Overview and Cncept Validation. J. Fluids Eng. 118, 494–497.

    Article  Google Scholar 

  • Kawthar-Ali M.H., Acharya M. (1996): Artificial Neural Networks for Suppression of the Dynamic-Stall Vortex over Pitching Airfoils. AIAA Paper No. 96-0540, Washington, D.C.

    Google Scholar 

  • Keefe L.R. (1993a): Two Nonlinear Control Schemes Contrasted in a Hydrodynamic Model. Phys. Fluids A 5, 931–947.

    Article  ADS  MathSciNet  Google Scholar 

  • Keefe L.R. (1993b): Drag Reduction in Channel Flow Using Nonlinear Control. AIAA Paper No. 93-3279, Washington, D.C.

    Google Scholar 

  • Keefe L.R. (1997): A MEMS-Based Normal Vorticity Actuator for Near-Wall Modification of Turbulent Shear Flows. Exp. Thermal & Fluid Science 13, to appear.

    Google Scholar 

  • Keefe L.R., Moin P., Kim J. (1992): The Dimension of Attractors Underlying Periodic Turbulent Poiseuille Flow. J. Fluid Mech. 242, 1–29.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kline S.J., Reynolds W.C., Schraub F.A., Runstadler P.W. (1967): The Structure of Turbulent Boundary Layers. J. Fluid Mech. 30, 741–773.

    Article  ADS  Google Scholar 

  • Kostelich E.J., Grebogi C, Ott E., Yorke J.A. (1993a): Targeting from Time Series. Bul. Am. Phys. Soc. 38, 2194.

    Google Scholar 

  • Kostelich E.J., Grebogi C, Ott E., Yorke J.A. (1993b): Higher-Dimensional Targeting. Phys. Rev. E 47, 305–310.

    Article  ADS  MathSciNet  Google Scholar 

  • Kovasznay L.S.G. (1970): The Turbulent Boundary Layer. Annu. Rev. Fluid Mech. 2, 95–112.

    Article  ADS  Google Scholar 

  • Kovasznay L.S.G., Kibens V., Blackwelder R.F. (1970): Large-Scale Motion in the Intermittent Region of a Turbulent Boundary Layer. J. Fluid Mech. 41, 283–325.

    Article  ADS  Google Scholar 

  • Kwong A., Dowling A. (1993): Active Boundary Layer Control in Diffusers. AIAA Paper No. 93-3255, Washington, D.C.

    Google Scholar 

  • Lai Y.-C, Grebogi C. (1993): Synchronization of Chaotic Trajectories Using Control. Phys. Rev. E 47, 2357–2360.

    Article  ADS  MathSciNet  Google Scholar 

  • Lai Y.-C, Deng M., Grebogi C. (1993a): Controlling Hamiltonian Chaos. Phys. Rev. E 47, 86–92.

    Article  ADS  MathSciNet  Google Scholar 

  • Lai Y.-C, Grebogi C, Tél T. (1994): Controlling Transient Chaos in Dynamical Systems. Towards the Harnessing of Chaos, ed. M. Yamaguchi, (Elsevier, Amsterdam).

    Google Scholar 

  • Lai Y.-C, Tél T., Grebogi C (1993b): Stabilizing Chaotic-Scattering Trajectories Using Control. Phys. Rev. E 48, 709–717.

    Article  ADS  MathSciNet  Google Scholar 

  • Laufer J. (1975): New Trends in Experimental Turbulence Research. Annu. Rev. Fluid Mech. 7, 307–326.

    Article  ADS  Google Scholar 

  • Liepmann H.W., Nosenchuck D.M. (1982): Active Control of Laminar-Turbulent Transition. J. Fluid Mech. 118, 201–204.

    Article  ADS  Google Scholar 

  • Liepmann H.W., Brown G.L., Nosenchuck D.M. (1982): Control of Laminar Instability Waves Using a New Technique. J. Fluid Mech. 118, 187–200.

    Article  ADS  Google Scholar 

  • Lindner J.F., Ditto W.L. (1995): Removal, Suppression and Control of Chaos by Nonlinear Design. Appl. Mech. Rev. 48, 795–808.

    Article  Google Scholar 

  • Lipkin R. (1993): Micro Steam Engine Makes Forceful Debut. Science News 144, 197.

    Article  Google Scholar 

  • Löfdahl L., Glavmo M., Johansson B., Stemme G. (1993): A Silicon. Transducer for the Determination of Wall-Pressure Fluctuations in Turbulent Boundary Layers. Appl. Scientific Res. 51, 203–207.

    Article  Google Scholar 

  • Löfdahl L., Kälvesten E., Stemme G. (1994): Small Silicon Based Pressure Transducers for Measurements in Turbulent Boundary Layers. Exp. Fluids 17, 24–31.

    Article  Google Scholar 

  • Lumley J.L. (1991): Control of the Wall Region of a Turbulent Boundary Layer. Turbulence: Structure and Control, ed. J.M. McMichael, 1–3 April, Ohio State University, Columbus, Ohio, 61–62.

    Google Scholar 

  • Lumley J.L. (1996): Control of Turbulence. AIAA paper No. 96-0001, Washington, D.C.

    Google Scholar 

  • Lüscher E., Hübler A. (1989): Resonant Stimulation of Complex Systems. Helv. Phys. Acta 62, 544–551.

    Google Scholar 

  • Mastrangelo C. (1993): Integration, Partition, and Reliability of Microelectrome-chanical Systems. Invited oral presentation at the AIAA Third Flow Control Conference, Orlando, Florida, 6–9 July.

    Google Scholar 

  • McMichael J.M. (1993): MEMS and Challenges of Flow Control. Invited oral presentation at the AIAA Third Flow Control Conference, Orlando, Florida, 6–9 July.

    Google Scholar 

  • McMichael J.M. (1996): Progress and Prospects for Active Flow Control Using Microfabricated Electromechanical Systems (MEMS). AIAA Paper No. 96-0306, Washington, D.C.

    Google Scholar 

  • Mehregany M. (1993): Overview of Microelectromechanical Systems. Invited oral presentation at the AIAA Third Flow Control Conference, Orlando, Florida, 6–9 July.

    Google Scholar 

  • Mehregany M., DeAnna R.G., Reshotko E. (1996): Microelectromechanical Systems for Aerodynamics Applications. AIAA Paper No. 96-0421, Washington, D.C.

    Google Scholar 

  • Moin P., Bewley T. (1994): Feedback Control of Turbulence. Appl. Mech. Rev. 47, S3–S13.

    Article  Google Scholar 

  • Nelson M.M., Ulingworth W.T. (1991): A Practical Guide to Neural Nets (Addison-Wesley, Reading, Massachusetts).

    Google Scholar 

  • Noor A., Jorgensen C.C. (1996): A Hard Look at Soft Computing. Aerospace America 34, September, 34–39.

    Google Scholar 

  • Nosenchuck D.M., Lynch M.K. (1985): The Control of Low-Speed Streak Bursting in Turbulent Spots. AIAA Paper No. 85-0535, New York.

    Google Scholar 

  • O’Connor L. (1992): MEMS: Micromechanical Systems. Mechanical Engineering 114, February, 40–47.

    Google Scholar 

  • Ott E., Grebogi C., Yorke J.A. (1990a): Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Ott E., Grebogi C., Yorke J.A. (1990b): Controlling Chaotic Dynamical Systems. Chaos: Soviet-American Perspectives on Nonlinear Science, ed. D.K. Campbell, (American Institute of Physics, New York), 153–172.

    Google Scholar 

  • Ouellette J. (1996): MEMS: Mega Promise for Micro Devices. Mechanical Engineering 118, October, 64–68.

    Google Scholar 

  • Paula G. (1996): MEMS Sensors Branch Out. Aerospace America 34, September, 26–32.

    Google Scholar 

  • Pomeau Y., Manneville P. (1980): Intermittent Transition to Turbulence in Dissipative Dynamical Systems. Commun. Math. Phys. 7, 189–197.

    Article  ADS  MathSciNet  Google Scholar 

  • Pretsch J. (1942): Umschlagbeginn und Absaugung. Jahrb. Dtsch. Luftfahrtforschung 1, 54–71.

    MathSciNet  Google Scholar 

  • Qin F., Wolf E.E., Chang H.-C. (1994): Controlling Spatiotemporal Patterns on a Catalytic Wafer. Phys. Rev. Lett. 72, 1459–1462.

    Article  ADS  Google Scholar 

  • Reynolds W.C. (1993): Sensors, Actuators, and Strategies for Turbulent Shear-Flow Contro. Invited oral presentation at the AIAA Third Flow Control Conference, Orlando, Florida, 6–9 July.

    Google Scholar 

  • Robinson S.K. (1991): Coherent Motions in the Turbulent Boundary Layer. Annu. Rev. Fluid Mech. 23, 601–639.

    Article  ADS  Google Scholar 

  • Robinson E.Y., Helvajian., Jansen S.W. (1996a): Small and Smaller: The World of MNT. Aerospace America 34, September, 26–32.

    Google Scholar 

  • Robinson E.Y., Helvajiam, Jansen S.W. (1996b): Big Benefits from Tiny Technologies. Aerospace America 34, October, 38–43.

    Google Scholar 

  • Romeiras F.J., Grebogi C, Ott E., Dayawansa W.P. (1992): Controlling Chaotic Dynamical Systems. Physica D 58, 165–192.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rotta J.C. (1970): Control of Turbulent Boundary Layers by Uniform Injection and Suction of Fluid. Seventh Congress of the International Council of the Aeronautical Sciences, ICAS Paper No. 70-10, Rome, Italy.

    Google Scholar 

  • Saffman P.G. (1978): Problems and Progress in the Theory of Turbulence. Structure and Mechanisms of Turbulence, ed. H. Fiedler, vol. 2, Lecture Notes in Physics, vol. 76, (Springer-Verlag, Berlin), 273–306.

    Chapter  Google Scholar 

  • Schreck S.J., Faller W.E., Luttges M.W. (1995): Neural Network Prediction of Three-Dimensional Unsteady Separated Flow Fields. J. Aircraft 32, 178–185.

    Article  ADS  Google Scholar 

  • Sen M., Wajerski D., Gad-el-Hak M. (1996): A Novel Pump for MEMS Applications. J. Fluids Eng. 118, 624–627.

    Article  Google Scholar 

  • Sharatchandra, M.C., Sen, M., and Gad-el-Hak, M. (1997): Navier-Stokes Simulations of a Novel Viscous Pump. J. Fluids Eng. 119, no. 2.

    Google Scholar 

  • Shinbrot T. (1993): Chaos: Unpredictable Yet Controllable? Nonlinear Science Today 3, 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Shinbrot T. (1995): Progress in the Control of Chaos. Adv. Physics 44, 73–111.

    Article  ADS  Google Scholar 

  • Shinbrot T. (1997): Prospects for Spatio-Temporal Chaos Control. In this volume.

    Google Scholar 

  • Shinbrot T., Ottino J.M. (1993a): Geometric Method to Create Coherent Structures in Chaotic Flows. Phys. Rev. Lett. 71, 843–846.

    Article  ADS  Google Scholar 

  • Shinbrot T., Ottino J.M. (1993b): Using Horseshoes to Create Coherent Structures in Chaotic Fluid Flows. Bul. Am. Phys. Soc. 38, 2194.

    Google Scholar 

  • Shinbrot T., Ditto W., Grebogi C., Ott E., Spano M., Yorke J.A. (1992a): Using the Sensitive Dependence of Chaos (the “Butterfly Effect”) to Direct Trajectories in an Experimental Chaotic System. Phys. Rev. Lett. 68, 2863–2866.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Shinbrot T., Grebogi C., Ott E., Yorke J.A. (1992b): Using Chaos to Target Stationary States of Flows. Phys. Lett. A 169, 349–354.

    Article  ADS  MathSciNet  Google Scholar 

  • Shinbrot T., Grebogi C., Ott E., Yorke J.A. (1993): Using Small Perturbations to Control Chaos. Nature 363, 411–417.

    Article  ADS  Google Scholar 

  • Shinbrot T., Grebogi C., Ott E., Yorke J.A. (1990): Using Chaos to Direct Trajectories to Targets. Phys. Rev. Lett. 65, 3215–3218.

    Article  ADS  Google Scholar 

  • Shinbrot T., Grebogi C., Ott E., Yorke J.A. (1992c): Using Chaos to Direct Orbits to Targets in Systems Describable by a One-Dimensional Map. Phys. Rev. A 45, 4165–4168.

    Article  ADS  MathSciNet  Google Scholar 

  • Singer J., Wang Y.-Z., Bau H.H. (1991): Controlling a Chaotic System. Phys. Rev. Lett. 66, 1123–1125.

    Article  ADS  Google Scholar 

  • Sirovich L., Deane A.E. (1991): A Computational Study of Rayleigh-Bénard Convection. Part 2. Dimension Considerations. J. Fluid Mech. 222, 251–265.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sreenivasan K.R. (1989): The Turbulent Boundary Layer. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 159–210.

    Google Scholar 

  • Swearingen J.D., Blackwelder R.F. (1984): Instantaneous Streamwise Velocity Gradients in the Wall Region. Bull. Am. Phys. Soc. 29, 1528.

    Google Scholar 

  • Tai Y.-C. (1993): Silicon Micromachining and Micromechanics. Invited oral presentation at the AIAA Third Flow Control Conference, Orlando, Florida, 6–9 July.

    Google Scholar 

  • Tang J., Bau H.H. (1993a): Stabilization of the No-Motion State in Rayleigh-Bénard Convection through the Use of Feedback Control. Phys. Rev. Lett. 70, 1795–1798.

    Article  ADS  Google Scholar 

  • Tang J., Bau H.H. (1993b): Feedback Control Stabilization of the No-Motion State of a Fluid Confined in a Horizontal Porous Layer Heated from Below. J. Fluid Mech. 257, 485–505.

    Article  MATH  ADS  Google Scholar 

  • Townsend A.A. (1961): Equilibrium Layers and Wall Turbulence. J. Fluid Mech. 11, 97–120.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Townsend A.A. (1970): Entrainment and the Structure of Turbulent Flow. J. Fluid Mech. 41, 13–46.

    Article  MATH  ADS  Google Scholar 

  • Ulrich A. (1944): Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung. Schriften Dtsch. Akad. Luftfahrtforschung B 8, 53.

    Google Scholar 

  • Vargo S.E., Muntz E.P. (1996): A Simple Micromechanical Compressor and Vacuum Pump for Flow Control and Other Distributed Applications. AIAA Paper No. 96-0310, Washington, D.C.

    Google Scholar 

  • Verollet E., Fulachier L., Dumas R., Favre A. (1972): Turbulent Boundary Layer with Suction and Heating to the Wall. Heat and Mass Transfer in Boundary Layers, eds. N. Afgan, Z. Zaric and P. Anastasijevec, vol. 1, (Pergamon Presss, Oxford), 157–168.

    Google Scholar 

  • Viswanath P.R. (1995): Flow Management Techniques for Base and Afterbody Drag Reduction. Prog. Aero. Sci. 32, 79–129.

    Article  Google Scholar 

  • Wadsworth D.C., Muntz E.P., Blackwelder R.F., Shiflett/ G.R. (1993): Transient Energy. Release Pressure Driven Microactuators for Control of Wall-Bounded Turbulent Flows. AIAA Paper No. 93-3271, Washington, D.C.

    Google Scholar 

  • Wang Y., Singer J., Bau H.H. (1992): Controlling Chaos in a Thermal Convection Loop. J. Fluid Mech. 237, 479–498.

    Article  ADS  MathSciNet  Google Scholar 

  • Wilkinson S.P., Balasubramanian R. (1985): Turbulent Burst Control Through Phase-Locked Surface Depressions. AIAA Paper No. 85-0536, Washington, D.C.

    Google Scholar 

  • Willmarth W.W. (1975). Structure of Turbulence in Boundary Layers. Adv. Appl. Mech. 15, 159–254.

    Article  ADS  Google Scholar 

  • Wiltse J.M., Glezer A. (1993): Manipulation of Free Shear Flows Using Piezoelectric Actuators. J. Fluid Mech. 249, 261–285.

    Article  ADS  Google Scholar 

  • Wilkinson S.P. (1990): Interactive Wall Turbulence Control. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics and Aeronautics, vol. 123, (AIAA, Washington, D.C.) 479–509.

    Google Scholar 

  • Wilkinson S.P., Lazos B.S. (1987): Direct Drag and Hot-Wire Measurements on Thin-Element Riblet Arrays. Turbulence Management and Relaminarization, eds. H.W. Liepmann and R. Narasimha, (Springer-Verlag, Berlin), 121–131.

    Google Scholar 

  • Wilkinson S.P., Anders J.B., Lazos B.S., Bushnell D.M. (1988). Turbulent Drag Reduction Research at NASA Langley: Progress and Plans. Int. J. Heat and Fluid Flow 9, 266–277.

    Article  Google Scholar 

  • Willmarth W.W. (1975a): Structure of Turbulence in Boundary Layers. Adv. Appl. Mech. 15, 159–254.

    Article  ADS  Google Scholar 

  • Willmarth W.W. (1975b): Pressure Fluctuations Beneath Turbulent Boundary Layers. Annu. Rev. Fluid Mech. 7, 13–37.

    Article  ADS  Google Scholar 

  • Yager R.R., Zadeh L.A. (editors) (1992): An Intorduction to Fuzzy Logic Applications in Intelligent Systems (Kluwer Academic, Boston).

    Google Scholar 

  • Yun W. (1993): System Considerations for Integration of Microsensors and Electronics. Invited oral presentation at the AIAA Third Flow Control Conference, Orlando, Florida, 6–9 July.

    Google Scholar 

  • Zilberman M., Wygnanski I., Kaplan R.E. (1977): Transitional Boundary Layer Spot in a Fully Turbulent Environment. Phys. Fluids 20, S258–S271.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gad-el-Hak, M. (1998). Frontiers of Flow Control. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics