Skip to main content

Standard Methods for Testing the Aerobic Biodegradation of Polymeric Materials. Review and Perspectives

  • Chapter
  • First Online:
Blockcopolymers - Polyelectrolytes - Biodegradation

Part of the book series: Advances in Polymer Science ((POLYMER,volume 135))

Abstract

There is an on-going worldwide research effort to develop biodegradable polymers for packaging from renewable sources. This development has caused a need to evaluate the biodegradation of these polymers in different environments, e.g. dumping in marine, freshwater, compost or landfill sites. Therefore, many organizations such as ASTM, OECD, the European Committee of Normalization, the Japan Biodegradable Plastics Society, etc., have developed accelerated laboratory test procedures for evaluating potentially biodegradable materials. This report gives an overview of the standardization activities for biodegradability assessment of polymers and a comparison of the methods used for biodegradability tests on solid polymers and packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkman A, Kline CH (1991) Recycling plastics today. Chemtech 10: 606–614

    Google Scholar 

  2. Filiol B (1991) Les plastiques biodégradables.Rapport du Ministère de l’Industrie et du Commerce Extérieur. France. June 1991. Pp 1–67

    Google Scholar 

  3. Cheverry M (1995) Enjeux de la directive européenne sur les emballages. La lettre ADEME 21:6

    Google Scholar 

  4. Ceccaldi P (1993) Le déchet en mutation. Biofutur 12:30–31

    Google Scholar 

  5. Evans JD, Sikdar SK (1990) Biodegradable plastics: an idea whose time has come. Chemtech 20: 38–42

    CAS  Google Scholar 

  6. Cimmino A, Conte C, Incitte S (1991) Biodegradability of plastic bag: chemical and regulatory aspects. Rass Chem 43:109–116

    CAS  Google Scholar 

  7. Musmeci L, Gucci PM, Voltera L (1994) Paper as reference material in≫Sturm test≪ applied to insoluble substances. Env. Toxicol. Water Quality. 9: 83–86

    Article  CAS  Google Scholar 

  8. Kaplan DL, Mayer JM, Ball D, McCassie J, Allan AL, Stenhouse P (1993) Fundamentals of biodegradable polymers. Biodegradable polymers and packaging. pp 1–43

    Google Scholar 

  9. Thayer A (1990) Degradable plastics generate contreversy in solid waste issues. Chemical and Engineering News 68: 7–24

    Google Scholar 

  10. Thiebaud S, Borredon ME (1995) Solvent-free esterification of wood with fatty acid chloride. Bioresource Technology 52

    Google Scholar 

  11. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl EnvMicrobiol 54:1977–1982

    CAS  Google Scholar 

  12. Doi Y, Kumagai Y, Tanahashi N, Mukai K (1992) Structural effects on the biodegradation of microbial and synthetic Poly(hydroxyalkanoates). In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable Polymers and Plastics. The Royal Society of Chemistry, Cambridge, pp 139–148

    Google Scholar 

  13. Bastioli C, Belloti V, Rallis A (1994) Microstructure and melt flow behavior of a starch-based polymer. Rheol Acta 33: 307–316

    Article  CAS  Google Scholar 

  14. Mayer J, Allen AL, Dell PA, Kaplan DL (1994) Development of biodegradable materials: balancing degradability and performance. Polym Prep 34:910–911

    Google Scholar 

  15. Battersby NS, Pack SE, Watkinson RJ (1992) A correlation between the biodegradability of oil products in the CEC L-33-T82 and modified sturm tests. Chemosphere 24:1989–2000

    Article  CAS  Google Scholar 

  16. Krupp LR, Jewell WJ (1992) Biodegradability of modified plastics films in controlled biological environments. Environ Sci. Technol 26:193–198

    Article  CAS  Google Scholar 

  17. Nyholm N (1991) The european system of standardized legal tests for assesing the biodegradability of chemicals. Env Technol & Chem 10:1237–1246

    Article  CAS  Google Scholar 

  18. Seal K (1991) A review of biodegradability test for new chemical notifications scheme. Chimica Oggi 9:30–32

    CAS  Google Scholar 

  19. Weytjens D, Van Ginneken I, Painter HA (1994) The recovery of carbon dioxide in the sturm test for ready biodegradability. Chemosphere 28: 801–812

    Article  CAS  Google Scholar 

  20. Cha Y, Pitt CG (1990) The biodegradability of polyester blends. Biomaterials 11:108–112

    Article  CAS  Google Scholar 

  21. David C, De Kesel C, Lefebvre F, Weiland M (1994) The biodegradation of polymers: recent results. Die Ang. Makro. Chem. 216:21–35.

    Article  CAS  Google Scholar 

  22. Ottenbrite RM, Albertsson AC (1992) Discussion on degradation terminology. In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable Polymers and Plastics. The Royal Society of Chemistry, Cambridge, pp 73–92

    Google Scholar 

  23. Swift G (1992) Biodegradability of polymers in the environment: complexities and signifiance of definitions and measurements. FEMS Microbiol Rev 103:339–346

    Article  CAS  Google Scholar 

  24. Van Volkenburgh B, White M (1994) Overview of biodegradable polymers and solid waste issues. Personal communication

    Google Scholar 

  25. Barenberg SA, Brash JL, Narayan R, Redpath AE (1990) Degradable materials: perspectives, issues and opportunities. CRC, Boca Raton, FL

    Google Scholar 

  26. Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (1992) Biodegradable polymers and plastics. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  27. Doi Y, Fukuda K (1994) Biodegradable plastics and polymers. Elsevier, Amsterdam

    Google Scholar 

  28. Andrady AL (1994) Assessment of environmental biodegradation of synthetic polymers. JMS-Rev Macromol Chem Phys C34:25–76

    CAS  Google Scholar 

  29. Kimura M, Toyota K, Iwatsuki M, Sawada H (1994) Effects of soil conditions on biodegradation of plastics and responsible microorganisms. In: Doi Y, Fukuda K (eds) Biodegradable Plastics and Polymers. Elsevier, pp 92–108

    Google Scholar 

  30. Battersby NS, Fieldwick PA, Ablitt T, Lee SA, Moys GR (1994) The interpretation of CEC L-33-T-82 biodegradability data. Chemosphere 28: 787–800

    Article  CAS  Google Scholar 

  31. Buchanan CM, Gardner RM, Komarek RJ (1993) Aerobic biodegradation of cellulose acetate. J Appl Polym Sci 47: 1709–1719

    Article  CAS  Google Scholar 

  32. Seal K (1991) A review of biodegradability test for new chemical notifications scheme. Chimica Oggi 9:30–32

    CAS  Google Scholar 

  33. Swift G (1994) Expectations for biodegradation testing methods. In: Doi Y, Fukuda K (eds) Biodegradable Plastics and Polymers. Elsevier, pp 228–236

    Google Scholar 

  34. Carrick DT (1994) Composting of PHBV co-polymers: the relationship between laboratory biodegradation testing and practical composting. Symposium on Polymers from Renewable Resources and their degradation. Stockholm November 1994,p 26

    Google Scholar 

  35. Lenz RW (1993) Biodegradable polymers. Adv Polym Sci 107: 1–40

    Article  CAS  Google Scholar 

  36. Sawada H (1994) Field testing of biodegradable plastics. In: Doi Y, Fukuda K (eds) Biodegradable Plastics and Polymers. Elsevier, pp 298–312

    Google Scholar 

  37. ASTM (1992) American Standardization of Testing Material. In: Annual Book of ASTM Standards. vol 08–02

    Google Scholar 

  38. McCassie JE, Mayer JM, Stoto RZ, Shupe AE (1992) Current methods for determining biodegradation of polymeric materials. Polym Mate Sci Eng 67:353–355

    CAS  Google Scholar 

  39. Narayan R (1992) Development of standards for degradable plastics by ASTM Subcommittee D-20.96 on environmentally degradable plastics. In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable Polymers and Plastics. The Royal Society of Chemistry, Cambridge, pp 176–190

    Google Scholar 

  40. JETRO (1992) R & D on biodegradable plastics in Japan. Report of Japan External Trade Organization, pp 1–35

    Google Scholar 

  41. Breant P, Aitken Y (1992) Regulations and standards in Europe. In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable Polymers and Plastics. The Royal Society of Chemistry, Cambridge, pp 165–168

    Google Scholar 

  42. Nyholm N (1991) The European system of standardized legal tests for assessing the biodegradability of chemicals. Env Toxicol & Chem 10: 1237–1246

    Article  CAS  Google Scholar 

  43. Ziegahm KF (1994) Degradation of packaging and packaging materials-Requirements and recent legislation in Europe. Symposium on Polymers from Renewable Resources and their degradation. Stockholm, November 1994, p 18

    Google Scholar 

  44. OECD. Organisation for Economic Cooperation and Development (1992) Guidelines for Testing of Chemicals. Paris France

    Google Scholar 

  45. Jones PH, Prasad D, Heskins M, Morgan MH, Guillet JE (1975) Bidegradability of photodegraded polymers. I-development of experimental procedure. Environmental Science and Technology 8:919–923

    Article  Google Scholar 

  46. Van Der Zee M, Sitsma L, Tournois H, De Wit D (1994) Assessment of biodegradation of water insoluble polymeric materials in aerobic and anaerobic aquatic environments. Chemosphere. 28:1757–1771

    Article  Google Scholar 

  47. Thouand G, Block JC (1993) The use of precultured inocula for biodegradability tests. EnvTechnol 14: 601–614

    CAS  Google Scholar 

  48. Sturm RN (1973) Biodegradability of nonionic surfactants: screebning test for predicting rate and ultimate biodegradation. J Oil Chem Soc 50: 159–167

    Article  CAS  Google Scholar 

  49. Raghavan D, Wagner GC, Wool RP (1993) Aerobic biometer analysis of glucose and starch biodegradation. J Environ Polym Degrad 1: 203–211

    Article  CAS  Google Scholar 

  50. Bloenberger S, David J, Geyer D, Gusterfson A, Snook J, Narayan R (1994) In: Doi Y, Fukuda K (eds) Biodegradable Plastics and Polymers. Elsevier, pp 601–609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Bellon-Maurel A. Calmon-Decriaud V. Chandrasekhar N. Hadjichristidis J. W. Mays S. Pispas M. Pitsikalis F. Silvestre

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calmon-Decriaud, A., Bellon-Maurel, V., Silvestre, F. (1998). Standard Methods for Testing the Aerobic Biodegradation of Polymeric Materials. Review and Perspectives. In: Bellon-Maurel, V., et al. Blockcopolymers - Polyelectrolytes - Biodegradation. Advances in Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69191-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-69191-X_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63156-9

  • Online ISBN: 978-3-540-69191-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics