Skip to main content

A Logical Approach to Constraint Satisfaction

  • Chapter
Finite Model Theory and Its Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

    Google Scholar 

  • M. Ajtai and Y. Gurevich. Datalog vs first-order logic. Journal of Computer and System Sciences, 49(3):562–588, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Apt. Principles of Constraint Programming. Cambridge Univ. Press, 2003.

    Google Scholar 

  • S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal of Algebraic and Discrete Methods,8:277–284, 1987.

    MATH  MathSciNet  Google Scholar 

  • A. Atserias. On digraph coloring problems and treewidth duality. In Proc. 20th IEEE Symp. on Logic in Computer Science, pages p106–115, 2005.

    Google Scholar 

  • W. Bibel. Constraint satisfaction from a deductive viewpoint. Artificial Intelligence, 35:401–413, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. In Proc. 25th ACM Symp. on Theory of Computing, pages 226–234, 1993.

    Google Scholar 

  • A. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proc. 43rd Symp. on Foundations of Computer Science, pages 649–658, 2002.

    Google Scholar 

  • A. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proc. 18th IEEE Symp. on Logic in Computer Science, pages 321–330, 2003.

    Google Scholar 

  • A. A. Bulatov, P. Jeavons, and A. A. Krokhin. Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational databases. In Proc. 9th ACM Symp. on Theory of Computing, pages 77–90, 1977.

    Google Scholar 

  • C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Ph.G. Kolaitis and F. Afrati, editors,Proc. 6th Int’l Conf. on Database Theory,Lecture Notes in Computer Science, volume 1186, pages 56–70. Springer, 1997.

    Google Scholar 

  • H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods without decompositions. In Proc. 11th Int’l Conf. on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, volume 3709, pages 167–181. Springer, 2005.

    Google Scholar 

  • D. A. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability for constraint satisfaction and spread cut decomposition. In Proc. 19th Int’l Joint Conf. on Artificial Intelligence, pages 72–77, 2005.

    Google Scholar 

  • M. C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41(1):89–95, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded cliquewidth. Theory of Computing Systems, 33:125–150, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Dalmau. Generalized majority–minority operations are tractable. In Proc. 20th IEEE Symp. on Logic in Computer Science, pages 438–447, 2005.

    Google Scholar 

  • V. Dalmau, Ph. G. Kolaitis, and M.Y. Vardi. Constraint satisfaction, bounded treewidth, and finite-variable logics. In P. Van Hentenryck, editor, Proc. 8th Int’l Conf. on Constraint Programming, Lecture Notes in Computer Science, volume 2470, pages 310–326. Springer, 2002.

    Google Scholar 

  • V. Dalmau and J. Pearson. Closure functions and width 1 problems. In Proc. 5th Int’l Conf. on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, volume 1713, pages 159–173. Springer, 1999.

    Google Scholar 

  • R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 276–185. Wiley, New York, 1992.

    Google Scholar 

  • R. Dechter. From local to global consistency. Artificial Intelligence, 55(1): 87–107, May 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Dechter. Bucket elimination: a unifying framework for reasoning. Artificial Intelligence, 113(1–2):41–85, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Dechter. Constraint Processing. Morgan Kaufmman, 2003.

    Google Scholar 

  • R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artificial Intelligence, 68:211–241, 1994.

    Article  MATH  Google Scholar 

  • R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, pages 353–366, 1989.

    Google Scholar 

  • R. G. Downey and M. R. Fellows. Parametrized Complexity. Springer, 1999.

    Google Scholar 

  • T. Feder. Constraint satisfaction: A personal perspective. Technical report, Electronic Colloquium on Computational Complexity,2006. Report TR06-021.

    Google Scholar 

  • T. Feder and D. Ford. Classification of bipartite boolean constraint satisfaction through delta-matroid intersection. Technical report, Electronic Colloquium on Computational Complexity, 2005. Report TR05-016.

    Google Scholar 

  • T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. on Computing, 28:57–104, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • T. A. Feder and M. Y. Vardi. Monotone monadic SNP and constraint satisfaction. In Proc. 25th ACM Symp. on Theory of Computing, pages 612–622, 1993.

    Google Scholar 

  • E. C. Freuder. Synthesizing constraint expressions. Communications of the ACM, 21(11):958–966, November 1978.

    Article  MATH  MathSciNet  Google Scholar 

  • E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the Association for Computing Machinery, 29(1):24–32, 1982.

    MATH  MathSciNet  Google Scholar 

  • E. C Freuder. Complexity of k-tree structured constraint satisfaction problems. Proc. 7th National Conference on Artificial Intelligence, pages 4–9, 1990.

    Google Scholar 

  • D. H. Frost. Algorithms and Heuristics for Constraint Satisfaction Problems. PhD thesis, Department of Computer Science, University of California, Irvine, 1997.

    Google Scholar 

  • H. Gaifman, H. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable optimization problems for database logic programs. In Proc. 2nd IEEE Symp. on Logic in Computer Science, pages 106–115, 1987

    Google Scholar 

  • M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

    Google Scholar 

  • G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. In Proc. 39th IEEE Symp. on Foundation of Computer Science, pages 706–715, 1998.

    Google Scholar 

  • G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposition methods. In Proc. 16th Int’l Joint Conf. on Artificial Intelligence, pages 394–399, 1999.

    Google Scholar 

  • G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. In Proc. 18th ACM Symp. on Principles of Database Systems, pages 21–32, 1999.

    Google Scholar 

  • M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. In Proc. 44th IEEE Symp. on Foundations of Computer Science, pages 552–561, 2003.

    Google Scholar 

  • M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries tractable? In Proc. 33rd ACM Symp. on Theory of Computing, pages 657–666, 2001.

    Google Scholar 

  • M. Gyssens, P. G. Jeavons, and D. A. Cohen. Decomposition constraint satisfaction problems using database techniques. Artificial Intelligence, 66:57–89, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Hell and J. NeÅ¡etÅ™il. On the complexity of H-coloring. Journal of Combinatorial Theory, Series B, 48:92–110, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Hell and J. NeÅ¡etÅ™il. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and Its applications, No. 28. Oxford University Press, 2004.

    Google Scholar 

  • Ph. G. Kolaitis and J. Panttaja. On the complexity of existential pebble games. In Proc. 12th Conf. Computer Science Logic, Lecture Notes in Computer Science, volume 2803, pages 314–329. Springer, 2003.

    Google Scholar 

  • Ph. G. Kolaitis and M. Y. Vardi. The decision problem for the probabilities of higher-order properties. In Proc. 19th ACM Symp. on Theory of Computing, pages 425–435, 1987.

    Google Scholar 

  • Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of variable-confined logics. In Proc. 11th IEEE Symp. on Logic in Computer Science, pages 348–359, 1996.

    Google Scholar 

  • Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences, pages 302–332, 2000.

    Google Scholar 

  • Ph.G. Kolaitis and M.Y. Vardi. A game-theoretic approach to constraint satisfaction. In Proc. of the 17th National Conference on Artificial Intelligence, pages 175–181, 2000.

    Google Scholar 

  • V. Kumar. Algorithms for constraint-satisfaction problems. AI Magazine, 13:32–44, 1992.

    Google Scholar 

  • R. E.—Ladner. On the structure of polynomial time reducibility. Journal of The Association for Computing Machinery, 22:155–171, 1975.

    Google Scholar 

  • B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint satisfaction problems. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 201–210, 2006.

    Google Scholar 

  • L. A. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115–116, 1973. In Russian. English translation in Problems of Information Transmission 9:265–266, 1973.

    Google Scholar 

  • A. K. Mackworth and E. C. Freuder. The complexity of constraint satisfaction revisited. Artificial Intelligence, 59(1–2):57–62, 1993.

    Article  Google Scholar 

  • B. J. McMahan, G. Pan, P. Porter, and M. Y. Vardi. Projection pushing revisited. In Proc. 9th Int’l Conf. on Extending Database Technology, Lecture Notes in Computer Science, volume 2992, pages 441–458. Springer, 2004.

    Google Scholar 

  • P. Meseguer. Constraint satisfaction problems: an overview. AI Communications, 2:3–16, 1989.

    Google Scholar 

  • C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. Journal of Computer and System Sciences, 43:425–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Pearson and P. Jeavons. A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Holloway University of London, 1997.

    Google Scholar 

  • N. Robertson and P. D. Seymour. Graph minors IV: Tree-width and well-quasi-ordering. Journal of Combinatorial Theory, Series B, 48(2):227–254, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Rosen. Finite Model Theory and Finite Variable Logics. Ph.D. Thesis, University of Pennsylvania, 1995.

    Google Scholar 

  • B. Rossman. Existential positive types and preservation under homomorphisisms. In Proc. 20th IEEE Symp. on Logic in Computer Science, pages 467–476, 2005.

    Google Scholar 

  • Y. Saraiya. Subtree Elimination Algorithms in Deductive Databases. PhD Thesis, Department of Computer Science, Stanford University, 1991.

    Google Scholar 

  • T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th ACM Symp. on Theory of Computing, pages 216–226, 1978.

    Google Scholar 

  • E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

    Google Scholar 

  • P. van Beek. On the inherent tightness of local consistency in constraint networks. In Proc. 11th National Conference on Artificial Intelligence, pages 368–373, 1994.

    Google Scholar 

  • P. van Beek and R. Dechter. Constraint tightness and looseness versus local and global consistency. Journal of The Association for Computing Machinery, 44(4):549–566, 1997.

    MATH  Google Scholar 

  • M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on Theory of Computing, pages 137–146, 1982.

    Google Scholar 

  • M. Y. Vardi. On the complexity of bounded-variable queries. In Proc. 14th ACM Symp. on Principles of Database Systems, pages 266–76, 1995.

    Google Scholar 

  • M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7 Int’l Conf. on Very Large Data Bases, pages 82–94, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolaitis, P.G., Vardi, M.Y. (2007). A Logical Approach to Constraint Satisfaction. In: Finite Model Theory and Its Applications. Texts in Theoretical Computer Science an EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68804-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-68804-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00428-8

  • Online ISBN: 978-3-540-68804-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics