Skip to main content

Providing Feedback to Equation Entries in an Intelligent Tutoring System for Physics

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1452))

Included in the following conference series:

Abstract

Andes, an intelligent tutoring system for Newtonian physics, provides an environment for students to solve quantitative physics problems. Andes provides immediate correct/incorrect feedback to each student entry during problem solving. When a student enters an equation, Andes must (1) determine quickly whether that equation is correct, and (2) provide helpful feedback indicating what is wrong with the student’s entry. To address the former, we match student equations against a pre-generated list of correct equations. To address the latter, we use the pre-generated equations to infer what equation the student may have been trying to enter, and generate hints based on the discrepancies. This paper describes the representation of equations and the procedures Andes uses to perform these tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cristina Conati, Abigail S. Gertner, Kurt VanLehn, and Marek J. Druzdzel. Online student modeling for coached problem solving using Bayesian networks. In Proceedings of UM-97, Sixth International Conference on User Modeling, pages 231–242, Sardinia, Italy, June 1997. Springer. 258

    Google Scholar 

  2. Abigail S. Gertner, Cristina Conati, and Kurt VanLehn. Procedural help in Andes: Generating hints using a Bayesian network student model. In Proceedings of the 15th National Conference on Artificial Intelligence, Madison, WI, 1998. to appear. 259

    Google Scholar 

  3. Denise Gürer. A Bi-Level Physics Student Diagnostic Utilizing Cognitive Models for an Intelligent Tutoring System. PhD thesis, Lehigh University, 1993. 257

    Google Scholar 

  4. Joel Martin and Kurt VanLehn. Student assessment using Bayesian nets. International Journal of Human-Computer Studies, 42:575–591, 1995. 259

    Article  Google Scholar 

  5. Douglas C. Merril, Brian J. Reiser, Michael Ranney, and J. Gregory Trafton. Effective tutoring techniques: A comparison of human tutors and intelligent tutoring systems. The Journal of the Learning Sciences, 3(2):277–305, 1992. 261

    Article  Google Scholar 

  6. A. G. Priest and R. O. Lindsay. New light on novice-expert differences in physics problem solving. British Journal of Psychology, 83:389–405, 1992. 256

    Google Scholar 

  7. Derek H. Sleeman. Inferring student models for intelligent computer-aided instruction. In R.S. Michalski, J.G. Carbonnel, and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 483–510. Tioga Publishing Company, Palo Alto, CA, 1983. 257

    Google Scholar 

  8. K. VanLehn. Conceptual and meta learning during coached problem solving. In C. Frasson, G. Gauthier, and A. Lesgold, editors, Proceedings of the 3rd International Conference on Intelligent Tutoring Systems ITS’ 96, pages 29–47. Springer, 1996. 258, 262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gertner, A.S. (1998). Providing Feedback to Equation Entries in an Intelligent Tutoring System for Physics. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds) Intelligent Tutoring Systems. ITS 1998. Lecture Notes in Computer Science, vol 1452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68716-5_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-68716-5_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64770-6

  • Online ISBN: 978-3-540-68716-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics