A Bottom-Up Approach to Multimedia Teachware

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1452)


This paper presents a bottom-up approach to multimedia teachware creation, that is completely based on self-descriptive media objects. Especially the lack of any static linkage between an application’s building blocks provides the best opportunities for any kind of automatic teachware generation, that on its part offers maximum adaptability, maintainability, and extensibility.


Index Entry Frame Structure Current User Sequence Algorithm Intelligent Tutor System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J. R., Bower, G. H. (1973). Human Associative Memory. Washington: Winston. 120Google Scholar
  2. 2.
    Apostopopoulos, N., Geukes, A., Zimmermann, S. (1996). DIALECT: Digital Interactive Lectures in Higher Education. In: Carlson, P., Makedon, F. (Eds.), Proceedings of ED-TELECOM 96-World Conference on Educational Telecommunications. Charlottesville: AACE 122Google Scholar
  3. 3.
    Baumgartner, P. (1997). Didaktische Anforderungen an (multimediale) Lernsoftware. In: Issing, L. J., Klimsa, P. (Eds.), Information und Lernen mit Multimedia 2. Weinheim: Beltz-Psychologie Verlags Union 117Google Scholar
  4. 4.
    Brusilovsky, P. (1992). Intelligent tutor, environment, and manual for programming. Educational and Training Technology International 29: 26–34. 119Google Scholar
  5. 5.
    Brusilovsky, P., Schwarz, E., Weber, G. (1996). ELM-ART: An intelligent tutoring system on World Wide Web. In: Frasson, C., Gauthier, G., Lesgold, A. (Eds.), Proceedings of the Third International Conference on Intelligent Tutoring Systems, ITS-96. Berlin: Springer. 119Google Scholar
  6. 6.
    Issing, L. J. (1997). Instruktionsdesign für Multimedia. In: Issing, L. J., Klimsa, P. (Eds.), Information und Lernen mit Multimedia 2. Weinheim: Beltz. 116Google Scholar
  7. 7.
    Kintsch, W. (1974). The Representation of Meaning in Memory. Hillsdale: Erlbaum. 120Google Scholar
  8. 8.
    Minsky, M. (1975). A framework for representing knowledge. In: Winston, P. H. (Ed.), The Psychology of Computer Vision. New York: McGraw-Hill. 120Google Scholar
  9. 9.
    Nielsen, J. (1997). Interface Design for Sun’s WWW Site. Palo Alto: Sun Microsystems. ( 117Google Scholar
  10. 10.
    Nilsson, N. (1982). Principles of Artificial Intelligence. Berlin: Springer. 120zbMATHGoogle Scholar
  11. 11.
    Norman, D. A., Rumelhart, D. E. (1975). Explorations in Cognition. San Francisco: Freeman. 120Google Scholar
  12. 12.
    Pérez, T., Gutiérrez, P., Lopistéguy, P. (1995). An adaptive hypermedia system. In: Greer, J. (Ed.), Proceedings of AI-ED’95, 7th World Conference on Artificial Inteligence in Education. Washington, DC: AACE. 119Google Scholar
  13. 13.
    Quillian, M. R. (1966). Semantic Memory. Cambridge: Bolt, Beranak and Newman. 120Google Scholar
  14. 14.
    Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading: Addison Wesley. 120zbMATHGoogle Scholar
  15. 15.
    Vassileva, J. (1997). Dynamic Course Generation on the WWW. In: Proceedings of the AI-ED’97 Workshop on Intelligent Educational Systems on the World Wide Web. ( 119
  16. 16.
    Weber, G., Specht, M. (1997). User Modeling and Adaptive Navigation Support in WWW-based Tutoring Systems. In: Jameson, A., Paris, C., Tasso, C., User Modeling: Proceedings of the Sixth International Conference, UM97. Vienna, New York: Springer. 119Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  1. 1.Center for Digital SystemsFree University of BerlinBerlinGermany

Personalised recommendations