Skip to main content

High-Resolution Photoemission Spectroscopy of Low-T c Superconductors

  • Chapter
Very High Resolution Photoelectron Spectroscopy

Part of the book series: Lecture Notes in Physics ((LNP,volume 715))

  • 2540 Accesses

Abstract

The high-resolution photoemission spectroscopy of conventional superconductors is reviewed. It is shown that with the presently available resolution (0.360 meV using laser excitation) the gap structure (like two gaps in MgB2 or an anisotropic gap in CeRu2) can be resolved with a high degree of accuracy. It is pointed out that the use of low-photon-energy laser excitation (10 eV or less) is an alternative way (as compared to the use of high photon energies) to make more bulk-sensitive measurements with photoemission spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Schrieffer: Theory of Superconductivity (Preseus books, Reading, MA, 1983)

    Google Scholar 

  2. W. L. MacMillan and J. M. Rowell: Tnneling and Strong-Coupling Superconductivity. In: Superconductivity, ed by R. D. Parks (Dekker, New York, 1969), Vol. 1, Sec. V.

    Google Scholar 

  3. For an extensive review on conventional superconductor, see. J. P. Carbotte: Rev. Mod. Phys. 62, 1027 (1990)

    Google Scholar 

  4. P. W. Anderson: The Theory of Superconductivity in the High-T c Cuprates (Princeton University Press, Princeton, New Jersey, 1997)

    Google Scholar 

  5. B. H. Brandow: Phil. Mag. 1, 2487 (2003)

    Article  ADS  Google Scholar 

  6. J.-M. Imer et al: Phys. Rev. Lett. 62, 336 (1989)

    Article  ADS  Google Scholar 

  7. F. Patthey et al: Phys. Rev. Lett. 58, 2810 (1987)

    Article  ADS  Google Scholar 

  8. A. Damascelli et al: Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  9. J. C. Campuzano et al: Photoemission in the High-T c Superconducotrs. In: The Physics of Superconductors (Springer-Verlag, Berlin Heidelberg, 2004) pp 167–273.

    Google Scholar 

  10. M. Grioni et al: Phys. Rev. B 43, 1216 (1991)

    Article  ADS  Google Scholar 

  11. C. Gu et al: Phys. Rev. B 50, 16566 (1994)

    Article  ADS  Google Scholar 

  12. D. Purdie et al: J. Electron Spectrosc. Relat. Phenom. 101–103, 223 (1999)

    Article  Google Scholar 

  13. A. Chainani et al: Phys. Rev. Lett. 85, 1966 (2000)

    Article  ADS  Google Scholar 

  14. T. Yokoya et al: J. Electron Spectrosc. Relat. Phenom. 124, 99 (2002)

    Article  Google Scholar 

  15. T. Yokoya et al: Jpn. J. Appl. Phys. 43, 3618 (2004)

    Article  ADS  Google Scholar 

  16. R. C. Dynes et al: Phys. Rev. Lett. 41, 1509 (1965)

    Article  ADS  Google Scholar 

  17. For examples, see T. Ekino and J. Akimitsu: Tnuueling Spectroscopy on High-T c Superoncutors. In: Studies of High Temperature Superconductors, ed by A. V. Narlikar (Nova, New York, 1992) pp 259–309

    Google Scholar 

  18. J. Zasadzinski: Tunneling Spectroscopy of Conventional and Unconventional Superconductors. In: The Physics of Superconductors (Springer-Verlag, Berlin Heidelberg, 2004) pp 591–646.

    Google Scholar 

  19. T. Yokoya et al: Phys. Rev. Lett. 85, 4952 (2000)

    Article  ADS  Google Scholar 

  20. S. Tsuda et al: Phys. Rev. Lett. 87, 177006 (2001)

    Article  ADS  Google Scholar 

  21. D. J. Scalapino: The Electron–Phonon Interacton and Strong-Coupling Superconductors. In: Superconductivity, ed by R. D. Parks (Dekker, New York, 1969), Vol. 1, Sec. IV.

    Google Scholar 

  22. W. L. MacMillan and J. M. Rowell: Phys. Rev. Lett. 14, 108 (1965)

    Article  ADS  Google Scholar 

  23. E. Schachinger et al: Phys. Rev. B 67, 214508 (2003)

    Article  ADS  Google Scholar 

  24. S. V. Dordevic et al: Phys. Rev B 71, 104529 (2005)

    Article  ADS  Google Scholar 

  25. X. J. Zhou et al: Phys. Rev. Lett. 95, 117001 (2005)

    Article  ADS  Google Scholar 

  26. B. N. Brockhouse et al: Phys. Rev. 128, 1099 (1962)

    Article  ADS  Google Scholar 

  27. F. Reinert et al: Phys. Rev. Lett. 91. 186406 (2003)

    Article  ADS  Google Scholar 

  28. Z. M. Yusof et al: Phys. Rev. Lett. 88, 167006 (2002)

    Article  ADS  Google Scholar 

  29. Y. A. Izyumov et al: Sov. Phys-Usp. 17, 356 (1975)

    Article  ADS  Google Scholar 

  30. F. Reinert et al: Phys. Rev. Lett. 85, 3930 (2001)

    Article  ADS  Google Scholar 

  31. T. Yokoya et al: J. Phys. Chem. Solids 63, 2141 (2002)

    Article  ADS  Google Scholar 

  32. J. Kuo and T. H. Geballe: Phys. Rev. B 23, 3230 (1981)

    Article  ADS  Google Scholar 

  33. S. Pei et al: Phys. Rev. B 41, 4126 (1990)

    Article  ADS  Google Scholar 

  34. L. F. Mattheiss et al: Phys. Rev. B 37, 3745 (1988)

    Article  ADS  Google Scholar 

  35. A. Chainani et al: Phys. Rev. B 64, 180509(R) (2001)

    Google Scholar 

  36. C. K. Loong et al: Phys. Rev. B 45, 8052 (1992)

    Article  ADS  Google Scholar 

  37. Q. Huang et al: Nature (London) 347, 369 (1990).

    Article  ADS  Google Scholar 

  38. For review, see O. Gunnarrson: Rev. Mod. Phys. 69, 575 (1994)

    Google Scholar 

  39. R. Hesper et al: Phys. Rev. Lett. 85, 1970 (2000)

    Article  ADS  Google Scholar 

  40. H. Kawaji et al: Phys. Rev. Lett. 74, 1427 (1995)

    Article  ADS  Google Scholar 

  41. T. Yokoya et al: Phys. Rev. B 64, 172504 (2001)

    Article  ADS  Google Scholar 

  42. T. Yokoya et al: Phys. Rev. B 70, 159902(E) (2004)

    Google Scholar 

  43. G.-Q. Zheng et al: J. Phys. Chem. Solids 59, 2169 (1998)

    Article  ADS  Google Scholar 

  44. T. Kohara et al: Phys. Rev. B 51, 3985 (1995)

    Article  ADS  Google Scholar 

  45. M. Nohara et al: J. Phys. Soc. Jpn. 66, 1888 (1997)

    Article  ADS  Google Scholar 

  46. G. Wang and K. Maki: Phys. Rev. B 58, 6493 (1998)

    Article  ADS  Google Scholar 

  47. M. Nohara et al: J. Phys. Soc. Jpn. 68, 1078 (1999)

    Article  ADS  Google Scholar 

  48. H. Kawano et al: Phys. Rev. Lett. 77, 4628 (1996)

    Article  ADS  Google Scholar 

  49. L. S. Borkowski and P. K. Hirschfeld: Phys. Rev. B 49, 15404 (1994)

    Article  ADS  Google Scholar 

  50. R. Fehrenbacher and M. R. Norman: Phys. Rev. B 50, 3495 (1994)

    Article  ADS  Google Scholar 

  51. J. Nagamatsu et al: Nature (London) 410, 63 (2001)

    Article  ADS  Google Scholar 

  52. C. Buzea and T. Yamashita: Supercond. Sci. Technol. 14, R115 (2001)

    Article  ADS  Google Scholar 

  53. A. Y. Liu et al: Phys. Rev. Lett. 87, 087005 (2001)

    Article  ADS  Google Scholar 

  54. T. Takahashi et al: Phys. Rev. lett. 86, 4915 (2001)

    Article  ADS  Google Scholar 

  55. H. Shul et al: Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  Google Scholar 

  56. G. Binnig et al: Phys. Rev. Lett. 45, 1352 (1980)

    Article  ADS  Google Scholar 

  57. T. Yokoya et al: Science 294, 2518 (2001)

    Article  ADS  Google Scholar 

  58. R. Corcoran et al: J. Phys. -Condens. Matter 6, 4479 (1994)

    Article  ADS  Google Scholar 

  59. S. Souma et al: Nature (London) 423, 65 (2003)

    Article  ADS  Google Scholar 

  60. S. Tsuda et al: Phys. Rev. Lett. 91, 127001 (2003)

    Article  ADS  Google Scholar 

  61. H. J. Choi et al: Nature (London) 418, 758 (2002)

    Article  ADS  Google Scholar 

  62. M. Imai et al: Appl. Phys. Lett. 80, 1019 (2002)

    Article  ADS  Google Scholar 

  63. S. Tsuda et al: Phys. Rev. B 69, 100506(R) (2004)

    Google Scholar 

  64. E. Boaknin et al: Phys. Rev. Lett. 90, 117003 (2003)

    Article  ADS  Google Scholar 

  65. S. Tsuda et al: Phys. Rev. B 72, 064527 (2005)

    Article  ADS  Google Scholar 

  66. S. Takahashi et al: J. Physique Coll. 44, 1733 (1983)

    Google Scholar 

  67. C. Felser et al: J. Mater. Chem. 8, 1787(1998)

    Article  Google Scholar 

  68. K. Stöwe and F. W. Wagner: J. Solid State Chem. 138, 160-168 (1998)

    Article  ADS  Google Scholar 

  69. T. Yokoya et al: Phys. Rev. B 71, 140504 (2005)

    Article  ADS  Google Scholar 

  70. T. Kiss et al: Phys. Rev. Lett. 94, 057001 (2005)

    Article  ADS  Google Scholar 

  71. T. Kiss et al: J. Electron Spectrosc. Relat. Phenom. 144, 953, (2005)

    Article  Google Scholar 

  72. T. Shimojima et al: Phys. Rev. B 71, 020505(R) (2005)

    Google Scholar 

  73. J. D. Koralek et al: Phys. Rev. Lett. 96, 017005 (2006)

    Article  ADS  Google Scholar 

  74. N. Kamakura et al: Europhys. Lett. 67, 240 (2004)

    Article  ADS  Google Scholar 

  75. T. Claesson et al: Phys. Rev. Lett. 93, 136402 (2004)

    Article  ADS  Google Scholar 

  76. T. Yokoya et al: Nature (London) 438, 647 (2005)

    Article  ADS  Google Scholar 

  77. J. Geerk et al: Phys. Rev. Lett. 94, 227005 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Yokoya, T., Chainani, A., Shin, S. (2007). High-Resolution Photoemission Spectroscopy of Low-T c Superconductors. In: Hüfner, S. (eds) Very High Resolution Photoelectron Spectroscopy. Lecture Notes in Physics, vol 715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68133-7_7

Download citation

Publish with us

Policies and ethics