Skip to main content

Photoemission as a Probe of the Collective Excitations in Condensed Matter Systems

  • Chapter
Very High Resolution Photoelectron Spectroscopy

Part of the book series: Lecture Notes in Physics ((LNP,volume 715))

  • 2576 Accesses

Abstract

Recent advances in photoemission are allowing detailed studies of the role of collective many-body excitations in the decay of a photohole. These collective excitations include phonons, charge density waves and magnetic or spin excitations. With these developments angle resolved photoemission with its momentum resolving capabilities has become a powerful probe of the transport properties in condensed matter systems. We review these advances and examine the application of high resolution photoemission to studies of both metallic systems and the new high-T c superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. MÃ¥rtensson et al: J. Electron Spectr. Relat. Phenom. 70, 117, (1994)

    Article  Google Scholar 

  2. J. G. Bednorz and K. A. Müller: Z. Phys. B: Condens. Matter 64, 189 (1986)

    Article  ADS  Google Scholar 

  3. D. Pines and P. Nozieres: The Theory of Quantum Liquids (Benjamin, New York, 1969)

    Google Scholar 

  4. N. V. Smith et al: Phys. Rev. B 47, 15476 (1993)

    Article  ADS  Google Scholar 

  5. G. D. Mahan: Many Particle Physics (Plenum Press, New York 1990)

    Google Scholar 

  6. N. V. Smith et al: Phys. Rev. B 64, 155106 (2001)

    Article  ADS  Google Scholar 

  7. Angle-Resolved Photoemission, Ed. S. Kevan (Elsevier, Amsterdam 1992)

    Google Scholar 

  8. G. Grimvall: The electron–phonon Interaction in Metals (North-Holland, New York, 1981)

    Google Scholar 

  9. T. Valla et al: Science 285, 2110 (1999)

    Article  Google Scholar 

  10. S. LaShell et al: Phys. Rev. B 61, 2371 (2000)

    Article  ADS  Google Scholar 

  11. A. Kaminski et al: Phys. Rev. Lett. 84, 1788 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Valla et al: Phys. Rev. Lett. 85, 4759 (2000)

    Article  ADS  Google Scholar 

  13. A. A. Kordyuk et al: Phys. Rev. B, 71, 214513 (2005)

    Article  ADS  Google Scholar 

  14. B. A. McDougall et al: Phys. Rev. B 51, 13891 (1995)

    Article  ADS  Google Scholar 

  15. T. Balasubramanian et al: Phys. Rev. B 57, R6866 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Hengsberger et al: Phys. Rev. Lett. 83, 592 (1999)

    Article  ADS  Google Scholar 

  17. T. Valla et al: Phys. Rev. Lett. 83, 2085 (1999)

    Article  ADS  Google Scholar 

  18. K. Jeong et al: Phys. Rev. B 38, 10302 (1988); K. Jeong, R. H. Gaylord and S. D. Kevan, Phys. Rev. B 39, 2973 (1989)

    Google Scholar 

  19. S. Y. Savrasov and D. Y. Savrasov: Phys. Rev. B 54, 16487 (1996)

    Article  ADS  Google Scholar 

  20. C. Hodges et al: Phys. Rev. B 4, 302 (1971)

    Article  ADS  Google Scholar 

  21. W. A. Harrison: Electronic Structure and the Properties of Solids (W. H. Freeman & Co, San Francisco, 1980)

    Google Scholar 

  22. J. A. Wilson et al: Phys. Rev. Lett. 32, 882 (1974)

    Article  ADS  Google Scholar 

  23. A. H. Castro Neto: Phys. Rev. Lett. 86, 4382 (2001)

    Article  ADS  Google Scholar 

  24. F. Smith et al: J. Phys. C: Solid State Phys. 5, L230 (1972); C. Berthier et al: Solid State Commun. 18, 1393 (1976); D. W. Murphy et al: J. Chem. Phys. 62, 967 (1975)

    Google Scholar 

  25. P. Moline et al: Phil. Mag. 30, 1091 (1974)

    Article  ADS  Google Scholar 

  26. H. Suderow et al: Phys. Rev. Lett. 95, 117006 (2005)

    Article  ADS  Google Scholar 

  27. P. Garoche et al: Solid State Commun. 19, 455 (1976); D. Sanchez et al: Physica B 204, 167 (1995)

    Google Scholar 

  28. J. E. Graebner and M. Robbins: Phys. Rev. Lett. 36, 422 (1976)

    Article  ADS  Google Scholar 

  29. R. Corcoran et al: J. Phys. Condens. Matter 6, 4479 (1994)

    Article  ADS  Google Scholar 

  30. T. Yokoya et al: Science 294, 2518 (2001); T. Kiss et al: Physica B 312-313, 666 (2002)

    Google Scholar 

  31. J. A. Wilson: Phys. Rev. B 15, 5748 (1977)

    Article  ADS  Google Scholar 

  32. N. J. Doran et al: J. Phys. C 11, 699 (1978)

    Article  ADS  Google Scholar 

  33. T. M. Rice and G. K. Scott: Phys. Rev. Lett. 35, 120 (1975)

    Article  ADS  Google Scholar 

  34. B. Ruzicka et al: Phys. Rev. Lett. 86, 4136 (2001)

    Article  ADS  Google Scholar 

  35. K. Rossnagel et al: Phys. Rev. B 72, 121103 (2005)

    Article  ADS  Google Scholar 

  36. R. Liu et al: Phys. Rev. Lett. 80, 5762 (1998)

    Article  ADS  Google Scholar 

  37. R. Liu et al: Phys. Rev. B 61, 5212 (2000)

    Article  ADS  Google Scholar 

  38. Th. Straub et al: Phys. Rev. Lett. 82, 4504 (1999)

    Article  ADS  Google Scholar 

  39. G. Benedek et al: Europhys. Lett. 5, 253 (1988); G. Brusdeylins et al: Phys. Rev. B 41, 5707 (1990)

    Google Scholar 

  40. T. Valla et al: Phys. Rev. Lett. 92, 086401 (2004)

    Article  ADS  Google Scholar 

  41. J. L. Feldman: Phys. Rev. B 25, 7132 (1982); G. Brusdeylins et al: Phys. Rev. B 41, 5707 (1990); Y. Nishio: J. Phys. Soc. Jpn. 63, 223 (1994)

    Google Scholar 

  42. J. M. E. Harper et al: Phys. Rev. B 15, 2943 (1977); K. Noto et al: Nuovo Cimento 38, 511 (1977)

    Google Scholar 

  43. S. V. Dordevic et al: Phys. Rev. B 64, 161103 (2001)

    Article  ADS  Google Scholar 

  44. R. Liu et al: Phys. Rev. B 61, 5212 (2000); A. V. Fedorov et al: unpublished.

    Google Scholar 

  45. Th. Straub et al: Phys. Rev. Lett. 82, 4504 (1999)

    Article  ADS  Google Scholar 

  46. W. C. Tonjes et al: Phys. Rev. B 63, 235101 (2001)

    Article  ADS  Google Scholar 

  47. H. F. Hess et al: J. Vac. Sci. Technol. A 8, 450 (1990)

    Article  ADS  Google Scholar 

  48. A. V. Fedorov et al: J. Elect. Spectr. And Relat. Phenom. 92, 19 (1998)

    Article  Google Scholar 

  49. A. V. Fedorov et al: Phys. Rev. B 65, 212409 (2002)

    Article  ADS  Google Scholar 

  50. J. Schäfer et al: Phys. Rev. Lett. 92, 97205 (2004)

    Article  Google Scholar 

  51. P. D. Johnson: Rep. Prog. Phys. 60, 1217-1304 (1997)

    Article  ADS  Google Scholar 

  52. R. Wu et al: Phys. Rev. B 44, 9400 (1991)

    Article  ADS  Google Scholar 

  53. D. Li et al: J. Magn. Magn. Mater. 99, 85 (1991)

    Article  ADS  Google Scholar 

  54. G. A. Mulhollan et al: Phys. Rev. Lett. 69, 3240 (1992)

    Article  ADS  Google Scholar 

  55. P. Wells et al: J. Phys. F 4, 1729 (1974)

    Article  ADS  Google Scholar 

  56. H. L. Skriver and I. Mertig: Phys. Rev. B 41, 6553 (1990)

    Article  ADS  Google Scholar 

  57. D. Li et al: Mat. Res. Socs Proc. 313, 451 (1993)

    Google Scholar 

  58. A. V. Fedorov et al: Phys. Rev. B 50, 2739 (1994); E. Weschke et al: Phys. Rev. Lett. 77, 3415 (1996)

    Google Scholar 

  59. B. Sinkovic et al: Phys. Rev. B 52, R15703 (1995)

    Article  ADS  Google Scholar 

  60. P. B. Allen: Phys. Rev. B 63, 214410 (2001)

    Article  ADS  Google Scholar 

  61. C. Zener: Phys. Rev. 81, 440 (1951); C. Zener: Phys. Rev. 82, 403 (1951); C. Zener: Phys. Rev. 83, 299 (1951)

    Google Scholar 

  62. A. Rehbein et al: Phys. Rev. B 67, 033403 (2003)

    Article  ADS  Google Scholar 

  63. Z.-X. Shen et al: Phys. Rev. Lett. 70, 1553 (1993)

    Article  ADS  Google Scholar 

  64. H. Ding et al: Phys Rev Lett. 74, 2784 (1995)

    Article  ADS  Google Scholar 

  65. A. G. Loeser et al: Science 273, 325 (1996)

    Article  ADS  Google Scholar 

  66. H. Ding et al: Nature 382, 51 (1996)

    Article  ADS  Google Scholar 

  67. B. Reihl et al: Phys. Rev. B 35, 8804 (1987)

    Article  ADS  Google Scholar 

  68. P. D. Johnson et al: Phys. Rev. B 35, 8811 (1987)

    Article  ADS  Google Scholar 

  69. C. G. Olsen et al: Science 245, 731 (1989)

    Article  ADS  Google Scholar 

  70. A. Damascelli et al: Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  71. J. C. Campuzano et al in Physics of Superconductors, Vol.II, ed K. H. Bennemann and J.B. Ketterson, Springer Berlin, 2004 p. 167–272

    Google Scholar 

  72. P. V. Bogdanov et al: Phys. Rev. Lett. 85, 2581 (2000)

    Article  ADS  Google Scholar 

  73. A. Kaminski et al: Phys. Rev. Lett. 86, 1070 (2001)

    Article  ADS  Google Scholar 

  74. A. Lanzara et al: Nature 412, 510 (2001)

    Article  ADS  Google Scholar 

  75. P. D. Johnson et al: Phys. Rev. Lett. 87, 177007 (2001)

    Article  ADS  Google Scholar 

  76. T. K. Kim et al: Phys. Rev. Lett. 91, 167002 (2003)

    Article  ADS  Google Scholar 

  77. X.J. Zhou et al: Nature 423, 398 (2003)

    Article  ADS  Google Scholar 

  78. M. Randeria et al: Phys. Rev. B 69, 144509 (2004)

    Article  ADS  Google Scholar 

  79. R. J. McQueeney et al: Phys. Rev. lett. 82, 628 (1999)

    Article  ADS  Google Scholar 

  80. G.-H. Gweon et al: Nature 430, 187 (2004)

    Article  ADS  Google Scholar 

  81. F. Douglas et al: to be published

    Google Scholar 

  82. X. J. Zhou: Phys. Rev. Lett. 95, 117001 (2005)

    Article  ADS  Google Scholar 

  83. T. Valla: cond-mat/0501138 (2005)

    Google Scholar 

  84. X. J. Zhou et al: cond-mat/0502040 (2005)

    Google Scholar 

  85. T. Yamasaki et al: cond-mat/0603006 (2006)

    Google Scholar 

  86. J. Hwang et al: Nature 427, 714, (2004)

    Article  ADS  Google Scholar 

  87. K. Terashima et al: Nature Physics 2, 27 (2006)

    Article  ADS  Google Scholar 

  88. A. V. Fedorov et al: Phys. Rev. Lett. 82, 2179 (1999)

    Article  ADS  Google Scholar 

  89. P. Dai et al: Science 284, 1346 (1999)

    Article  ADS  Google Scholar 

  90. T. Valla: Proceedings SPIE – Volume 5932, Strongly Correlated Electron Materials: Physics and Nanoengineering, Ivan Bozovic, Davor Pavuna Editors, 593203 (2005)

    Google Scholar 

  91. T. Valla et al: Phys. Rev. Lett. 85, 828 (2000)

    Article  ADS  Google Scholar 

  92. T. Kiss et al: Phys Rev. Lett. 94, 057001(2005)

    Article  ADS  Google Scholar 

  93. J. D. Koralek et al: Phys. Rev. Lett. 96, 017005 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Johnson, P., Valla, T. (2007). Photoemission as a Probe of the Collective Excitations in Condensed Matter Systems. In: Hüfner, S. (eds) Very High Resolution Photoelectron Spectroscopy. Lecture Notes in Physics, vol 715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68133-7_3

Download citation

Publish with us

Policies and ethics