Skip to main content

Compositional Performance Modelling with the TIPPtool

  • Conference paper
  • First Online:
Computer Performance Evaluation (TOOLS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1469))

Abstract

Stochastic Process Algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art-techniques, and wrapped in a user-friendly graphical front end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Workshops on Process Algebras and Performance Modelling, 1993 Edinburgh, 1994 Erlangen, 1995 Edinburgh, 1996 Torino, 1997 Twente, 1998 Nice.

    Google Scholar 

  2. M. Ajmone Marsan, G. Balbo, and G. Conte. Performance Models of Multiprocessor Systems. MIT Press, 1986.

    Google Scholar 

  3. C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation. In Proc. CAV’96. LNCS 1102, 1996.

    Google Scholar 

  4. M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In CONCUR’ 96.

    Google Scholar 

  5. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

    Article  Google Scholar 

  6. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol verification with the ALDEBARAN toolset. Int. J. Softw. Tools for Techn. Transf., 1(1/2):166–184, 1997.

    MATH  Google Scholar 

  7. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and Verification of the Powerscale Bus Arbitration Protocol: An Industrial Experiment with LOTOS. In Formal Description Techniques IX. Chapmann Hall, 1996.

    Google Scholar 

  8. P.R. D’Argenio, J-P. Katoen, and E. Brinksma. An algebraic approach to the specification of stochastic systems. In Programming Concepts and Methods. Chapman and Hall, 1998.

    Google Scholar 

  9. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-Based Approach to Performance Modelling. In 7th Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation, Wien, 1994.

    Google Scholar 

  10. N. Götz. Stochastische Prozeßalgebren — Integration von funktionalem Entwurf und Leistungsbewertung Verteilter Systeme. PhD thesis, Universität Erlangen-Nürnberg, April 1994.

    Google Scholar 

  11. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The integration of functional specification and performance analysis using stochastic process algebras. In Tutorial Proc. of PERFORMANCE’ 93. LNCS 729.

    Google Scholar 

  12. F. Hartleb and A. Quick. Performance Evaluation of Parallel Programms — Modeling and Monitoring with the Tool PEPP. In Proc. “Messung, Modellierung und Bewertung von Rechen-und Kommunikationssystemen”, p. 51–63. Informatik Aktuell, Springer, 1993.

    Google Scholar 

  13. H. Hermanns. InteractiveMarkov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998.

    Google Scholar 

  14. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras as a Tool for Performance and Dependability Modelling. In Proc. of IEEE Int. Computer Performance and Dependability Symposium, p. 102–111, 1995. IEEE Computer Society Press.

    Google Scholar 

  15. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras — Between LOTOS and Markov Chains. Computer Networks and ISDN Systems, 30(9–10):901–924, 1998.

    Article  Google Scholar 

  16. H. Hermanns, M. Rettelbach, and T. Weiß. Formal characterisation of immediate actions in SPA with nondeterministic branching. In The Computer Journal [1], 1995.

    Google Scholar 

  17. U. Herzog. Formal Description, Time and Performance Analysis. A Framework. In Entwurf und Betrieb Verteilter Systeme. Springer, Berlin, IFB 264, 1990.

    Google Scholar 

  18. U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Generally Distributed Activity Times and Hierarchical Modelling. [1], 1996.

    Google Scholar 

  19. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

    Google Scholar 

  20. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

    Google Scholar 

  21. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation, 86:43–68, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.P. Katoen, D. Latella, R. Langerak, and E. Brinksma. Partial Order Models for Quantitative Extensions of LOTOS. Computer Networks and ISDN Systems, 1998. to appear.

    Google Scholar 

  23. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

    Google Scholar 

  24. J.A. Manas, T. de Miguel, and J. Salvachua. Tool Support to Implement LOTOS Specifications. Computer Networks and ISDN Systems, 25(7), 1993.

    Google Scholar 

  25. V. Mertsiotakis. Approximate AnalysisMethods for Stochastic Process Algebras. PhD thesis, Universität Erlangen-Nürnberg, 1998. to appear.

    Google Scholar 

  26. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

    MATH  Google Scholar 

  27. R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing, 16(6):973–989, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Priami. Stochastic π-calculus. [1], 1995.

    Google Scholar 

  29. M. Rettelbach. Stochastische Prozeßalgebrenmit zeitlosen Aktivitäten und probabilistischen Verzweigungen. PhD thesis, Universität Erlangen-Nürnberg, 1996.

    Google Scholar 

  30. M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic transition systems. TR IMMD 7 2/98, Universität Erlangen-Nürnberg, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M. (1998). Compositional Performance Modelling with the TIPPtool. In: Puigjaner, R., Savino, N.N., Serra, B. (eds) Computer Performance Evaluation. TOOLS 1998. Lecture Notes in Computer Science, vol 1469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68061-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-68061-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64949-6

  • Online ISBN: 978-3-540-68061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics