Skip to main content

The insulin receptor and metabolic signaling

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 137

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 137))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BPS:

Between PH and SH2

DAF:

Dauer formation

EGF:

Epidermal growth factor

ERK:

extracellular signal regulated kinase (same as MAP kinase)

FAK:

Focal adhesion kinase

FFA:

Free fatty acid

GFAT:

glutamine fructose-6-phosphate amidotransferase

GlcNAc:

N-acetyl glucosamine

GFP:

Green fluorescent protein

Grb:

Growth factor bound protein

GS:

Glycogen synthase

GSK:

Glycogen synthase kinase

IGFI:

Insulin-like growth factor

IGFIR:

Insulin-like growth factor receoptor

IR:

Insulin receptor

IRAP:

Insulin-responsive aminopeptidase

IRS:

Insulin receptor substrate

JAK2:

Janus family kinase 2

MAD:

Mitotic arrest deficient

MAPK:

MAP kinase

MODY:

Maturity onset diabetes of the young

NGF:

Nerve growth factor

NIDDM:

Non-insulin-dependent diabetes mellitus

PDGF:

Platelet-derived growth factor

PH domain:

Pleckstrin homology domain

PI 3-kinase:

Phosphatidyl inositol 3-kinase

PKB:

Protein kinase B (same as AKT)

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor

PTB domain:

Phosphotyrosine binding domain

PTG:

Protein targeting to glycogen

PTEN:

Phosphatase and tensin homolog

PTP1B:

Protein tyrosine phosphatase 1b

SCAMP:

Secretory carrier membrane protein

SH2 domain:

Src homology domain 2

SHC:

Src and collagen homologous protein

SHIP2:

SH2-containing inositol 5′ phosphatase 2

SHP-2:

SH2-containing tyrosine phosphatase 2

SNAP:

Soluble N-ethylmaleimide-sensitive factor

SNARE:

Soluble NSF attachment receptor

SOS:

Son of sevenless guanine nucleotide exchange factor

STAT:

Signal transducer and activator of transcription

TNF:

Tumor necrosis factor

References

  • Abel ED, Oberste-Berghaus C, Minnemann T, Kaulbach HC, Kahn BB (1998) Adipose-specific reduction of GLUT4 cy Cre/loxP gene targeting in transgenic mice results in glucose intolerance. Diabetes 47 (Suppl 1):A66 (0258)

    Google Scholar 

  • Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Jose PA, Taylor SI, Westphal H (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12:106–9

    Article  PubMed  Google Scholar 

  • Ahmad F, Goldstein BJ (1997) Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J Biol Chem 272:448–57

    Article  PubMed  Google Scholar 

  • Ahmad F, Li PM, Meyerovitch J, Goldstein BJ (1995) Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270:20503–8

    Article  PubMed  Google Scholar 

  • Aledo JC, Lavoie L, Volchuk A, Keller SR, Klip A, Hundal HS (1997) Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 comparment. Biochem J 325:727–32

    PubMed  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J 15:6541–51

    PubMed  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–9

    Article  PubMed  Google Scholar 

  • Andersen AS, Kjeldsen T, Wiberg FC, Christensen PM, Rasmussen JS, Norris K, Moller KB, Moller NP (1990a) Changing the insulin receptor to possess insulin-like growth factor I ligand specificity. Biochemistry 29:7363–6

    Article  PubMed  Google Scholar 

  • Andersen AS, Kjeldsen T, Wiberg FC, Christensen PM, Rasmussen JS, Norris K, Moller KB, Moller NPH (1990b) Changing the insulin receptor to possess insulin-like growth factor I specificity. Biochem 29:7363–7366

    Article  PubMed  Google Scholar 

  • Andersen AS, Kjeldsen T, Wiberg FC, Vissing H, Schaffer L, Rasmussen JS, De Meyts P, Moller NP (1992) Identification of determinants that confer ligand specificity on the insulin receptor. J Biol Chem 267:13681–6

    PubMed  Google Scholar 

  • Anderson CM, Olefsky JM (1991) Phorbol ester-mediated protein kinase C interaction with wild-type and COOH-terminal truncated insulin receptors. J Biol Chem 266:21760–4

    PubMed  Google Scholar 

  • Anderson D, Koch CA, Grey L, Ellis C, Moran M, Pawson T (1990) Binding of SH2 domains of phospholipase Cγ1, GAP and Src to activated growth factor receptors. Science 250:979–982

    PubMed  Google Scholar 

  • Araki E, Lipes MA, Patti M-E, Bruning JC, Haag B, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–189

    Article  PubMed  Google Scholar 

  • Araki S, Tamori Y, Kawanishi M, Shinoda H, Masugi J, Mori H, Niki T, Okazawa H, Kubota T, Kasuga M (1997) Inhibition of the binding of SNAP-23 to syntaxin 4 by Munc18c. Biochem Biophys Res Commun 234:257–62

    Article  PubMed  Google Scholar 

  • Avruch J, Nemenoff RA, Blackshear PJ, Pierce MW, Osathanondh R (1982) Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes. Comparison to epidermal growth factor-stimulated phosphorylation. J Biol Chem 257:15162–6

    PubMed  Google Scholar 

  • Azpiazu I, Saltiel AR, DePaoli-Roach AA, Lawrence JC (1996) Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J Biol Chem 271:5033–9

    Article  PubMed  Google Scholar 

  • Backer JM, Myers MG, Sun XJ, Chin DJ, Shoelson SE, Miralpeix M, White MF (1993) Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3′-kinase. J Biol Chem 268:8204–8212

    PubMed  Google Scholar 

  • Baldwin SA, Barros LF, Griffiths M (1995) Trafficking of glucose transporters — signals and mechanisms. Biosci Rep 15:419–26

    Article  PubMed  Google Scholar 

  • Ballinger SW, Shoffner JM, Gebhart S, Koontz DA, Wallace DC (1994) Mitochondrial diabetes revisited. Nat Genet 7:458–9

    Article  PubMed  Google Scholar 

  • Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet 1:11–5

    Article  PubMed  Google Scholar 

  • Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA, Kusari J (1997a) Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem 272:1639–45

    Article  PubMed  Google Scholar 

  • Bandyopadhyay G, Standaert ML, Galloway L, Moscat J, Farese RV (1997b) Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology 138:4721–31

    Article  PubMed  Google Scholar 

  • Bardelli A, Longati P, Gramaglia D, Stella MC, Comoglio PM (1997) Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential. Oncogene 15:3103–11

    Article  PubMed  Google Scholar 

  • Baron AD, Zhu JS, Zhu JH, Weldon H, Maianu L, Garvey WT (1995) Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. J Clin Invest 96:2792–801

    PubMed  Google Scholar 

  • Begum N, Ragolia L (1996) Effect of tumor necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells. Endocrinology 137:2441–6

    Article  PubMed  Google Scholar 

  • Begum N, Ragolia L, Srinivasan M (1996) Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells. Eur J Biochem 238:214–20

    Article  PubMed  Google Scholar 

  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13:198–208

    PubMed  Google Scholar 

  • Berti L, Kellerer M, Capp E, Haring HU (1997) Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a P13-kinase mediated effect. Diabetologia 40:606–9

    Article  PubMed  Google Scholar 

  • Berti L, Mosthaf L, Kroder G, Kellerer M, Tippmer S, Mushack J, Seffer E, Seedorf K, Haring H (1994) Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem 269:3381–6

    PubMed  Google Scholar 

  • Biber JW, Lienhard GE (1986) Isolation of vesicles containing insulin-responsive, intracellular glucose transporters from 3T3-L1 adipocytes. J Biol Chem 261:16180–4

    PubMed  Google Scholar 

  • Blaikie P, Immanuel D, Wu J, Li N, Yajnik V, Margolis B (1994) A region of SHC distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J Biol Chem 269:32031–32034

    PubMed  Google Scholar 

  • Bliss M (1982) The discovery of insulin. University of Chicago Press, Chicago. 304, [16] of plates pp

    Google Scholar 

  • Boden G (1996) Fatty acids and insulin resistance. Diabetes Care 19:394–5

    PubMed  Google Scholar 

  • Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10

    PubMed  Google Scholar 

  • Boden G (1998) Free fatty acids FFA), a link between obesity and insulin resistance [In Process Citation]. Front Biosci 3:D169–75

    PubMed  Google Scholar 

  • Bossenmaier B, Mosthaf L, Mischak H, Ullrich A, Haring HU (1997) Protein kinase C isoforms beta 1 and beta 2 inhibit the tyrosine kinase activity of the insulin receptor. Diabetologia 40:863–6

    Article  PubMed  Google Scholar 

  • Brozinick JT, Jr., Birnbaum MJ (1998) Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J Biol Chem 273:14679–82

    Article  PubMed  Google Scholar 

  • Bruning JC, Winnay J, Cheatham B, Kahn CR (1997) Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1-deficient cells. Mol Cell Biol 17:1513–21

    PubMed  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  PubMed  Google Scholar 

  • Burks DJ, Pons S, Towery H, Smith-Hall J, Myers MG, Jr., Yenush L, White MF (1997) Heterologous pleckstrin homology domains do not couple IRS-1 to the insulin receptor. J Biol Chem 272:27716–21

    Article  PubMed  Google Scholar 

  • Buse MG, Robinson KA, Gettys TW, McMahon EG, Gulve EA (1997) Increased activity of the hexosamine synthesis pathway in muscles of insulin-resistant ob/ob mice. Am J Physiol 272:E1080–8

    PubMed  Google Scholar 

  • Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS (1996) Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes 45:1503–10

    PubMed  Google Scholar 

  • Cain CC, Trimble WS, Lienhard GE (1992) Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem 267:11681–4

    PubMed  Google Scholar 

  • Calera, MR, Martinez, C, Liu, H, El Jack, AK, Birnbaum, MJ and Pilch PF (1998) Insulin Increases the Association of Akt-2 with Glut4-containing Vesicles. J Biol Chem 1998 273:7201–4

    Article  PubMed  Google Scholar 

  • Cantley LC, Songyang Z (1994) Specificity in recognition of phosphopeptides by srchomology 2 domains. J Cell Sci Suppl 18:121–6

    PubMed  Google Scholar 

  • Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–8

    Article  PubMed  Google Scholar 

  • Chang PY, Goodyear LJ, Benecke H, Markuns JS, Moller DE (1995) Impaired insulin signaling in skeletal muscles from transgenic mice expressing kinase-deficient insulin receptors. J Biol Chem 270:12593–600

    Article  PubMed  Google Scholar 

  • Charbonneau H, Tonks NK (1992) 1002 protein phosphatases? Annu Rev Cell Biol 8:463–93

    Article  PubMed  Google Scholar 

  • Chardin P, Camonis JH, Gale NW, Van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D (1993) Human SOS1: a guanine nucleotide exchenge factor for ras that binds to GRB2. Science 260:1338–1343

    PubMed  Google Scholar 

  • Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14:4902–11

    PubMed  Google Scholar 

  • Cheatham B, Volchuk A, Kahn CR, Wang L, Rhodes CJ, Klip A (1996) Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci USA 93:15169–73

    Article  PubMed  Google Scholar 

  • Chen D, Elmendorf JJ, Olson AL, Li X, Earp MS, Pessin JE (1997a) Osmotic shock stimulates GLUT4 translocation in 3T3-L1 adipocytes by a novel tyrosine kinase pathway. J Biol Chem 272:27401–10

    Article  PubMed  Google Scholar 

  • Chen F, Foran P, Shone CC, Foster KA, Melling, J, Dolly JO (1997b) Botulinum neurotoxin B inhibits insulin-stimulated glucose uptake into 3T3-L1 adipocytes and cleaves cellubrevin unlike type A toxin which failed to proteolyze the SNAP-23 present. Biochemistry 36:5719–28

    Article  PubMed  Google Scholar 

  • Chen H, Ing BL, Robinson KA, Feagin AC, Buse MG, Quon MJ (1997c) Effects of overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT) and glucosamine treatment on translocation of GLUT4 in rat adipose cells. Mol Cell Endocrinol 135:67–77

    Article  PubMed  Google Scholar 

  • Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P, Quon MJ (1997d) Protein-tyrosine phosphatases PTP1B and syp are modulators of insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem 272:8026–31

    Article  PubMed  Google Scholar 

  • Chen J, Sadowski H, Kohanski R, Wang L (1997e) Stat5 is a physiological substrate of the insulin receptor. Proc. Natl Acad Sci USA 94:2295–2300

    Article  PubMed  Google Scholar 

  • Chen JF, Guo JH, Moxham CM, Wang HY, Malbon CC (1997f) Conditional, tissuespecific expression of Q205L G alpha i2 in vivo mimics insulin action. J Mol Med 75:283–9

    Article  PubMed  Google Scholar 

  • Chen RH, Murray A (1997) Characterization of spindle assembly checkpoint in Xenopus egg extracts. Methods Enzymol 283:572–84

    PubMed  Google Scholar 

  • Chen RH, Waters JC, Salmon ED, Murray AW (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274:242–6

    Article  PubMed  Google Scholar 

  • Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89:9267–71

    PubMed  Google Scholar 

  • Chin JE, Dickens M, Tavare JM, Roth RA (1993) Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J Biol Chem 268:6338–47

    PubMed  Google Scholar 

  • Chou CK, Dull TJ, Russel DS, Cherzi R, Lebwohl D, Ullrich A, Rosen OM (1987) Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate post-receptor effects of insulin. J Biol Chem 262:1842–1847

    PubMed  Google Scholar 

  • Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG (1990) Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proc Natl Acad Sci USA 87:5514–8

    PubMed  Google Scholar 

  • Coderre L, Kandror KV, Vallega G, Pilch PF (1995) Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 270:27584–8

    Article  PubMed  Google Scholar 

  • Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201:475–81

    Article  PubMed  Google Scholar 

  • Coghlan MP, Pillay TS, Tavare JM, Siddle K (1994) Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serine-1327 as a novel site of phorbol ester-induced phosphorylation. Biochem J 303:893–9

    PubMed  Google Scholar 

  • Cohen B, Novick D, Rubinstein M (1996) Modulation of insulin activities by leptin. Science 274:1185–8

    Article  PubMed  Google Scholar 

  • Cormont M, Tanti JF, Zahraoui A, Van Obberghen E, Le Marchand-Brustel Y (1994) Rab4 is phosphorylated by the insulin-activated extracellular-signal-regulated kinase ERK1. Eur J Biochem 219:1081–5

    Article  PubMed  Google Scholar 

  • Cormont M, Tanti JF, Zahraoui A, Van Obberghen E, Tavitian A, Le Marchand-Brustel Y (1993) Insulin and okadaic acid induce Rab4 redistribution in adipocytes. J Biol Chem 268:19491–7

    PubMed  Google Scholar 

  • Cortright RN, Dohm GL (1997) Mechanisms by which insulin and muscle contraction stimulate glucose transport. Can J Appl Physiol 22:519–30

    PubMed  Google Scholar 

  • Corvera S, Jaspers S, Pasceri M (1991) Acute inhibition of insulin-stimulated glucose transport by the phosphatase inhibitor, okadaic acid. J Biol Chem 266:9271–5

    PubMed  Google Scholar 

  • Craparo A, O'Neill TJ, Gustafson TA (1995) Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor. J Biol Chem 270:15639–15643

    Article  PubMed  Google Scholar 

  • Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–80

    PubMed  Google Scholar 

  • Crook ED, Daniels MC, Smith TM, McClain DA (1993) Regulation of insulin-stimulated glycogen synthase activity by overexpression of glutamine: fructose-6-phosphate amidotransferase in rat-1 fibroblasts. Diabetes 42:1289–96

    PubMed  Google Scholar 

  • Crook ED, McClain DA (1996) Regulation of glycogen synthase and protein phosphatase-1 by hexosamines. Diabetes 45:322–7

    PubMed  Google Scholar 

  • Crook ED, Zhou J, Daniels M, Neidigh JL, McClain DA (1995) Regulation of glycogen synthase by glucose, glucosamine, and glutamine:fructose-6-phosphate amidotransferase. Diabetes 44:314–20

    PubMed  Google Scholar 

  • Cross DA, Watt PW, Shaw M, van der Kaay J, Downes CP, Holder JC, Cohen P (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 406:211–5

    Article  PubMed  Google Scholar 

  • Cuatrecasas P (1972) Properties of the insulin receptor isolated from liver and fat cell membranes. J Biol Chem 247:1980–91

    PubMed  Google Scholar 

  • Cuatrecasas P, Hollenberg MD (1975) Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent “negative cooperativity”. Biochem Biophys Res Commun 62:31–41

    Article  PubMed  Google Scholar 

  • Cuatrecasas P, Parikh I (1974) Affinity chromatography of insulin receptors. Methods Enzymol 34:653–70

    PubMed  Google Scholar 

  • Daly RJ, Sanderson GM, Janes PW, Sutherland RL (1996) Cloning and characterization of Grb14, a novel member of the Grb7 gene family. J Biol Chem 271:12502–12510

    Article  PubMed  Google Scholar 

  • Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G (1996) The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–93

    Article  PubMed  Google Scholar 

  • De Fea K, Roth RA (1997a) Modulation of insulin receptors substrate-I tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 272:31400–06

    Article  PubMed  Google Scholar 

  • De Fea K, Roth RA (1997b) Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36:12939–47

    Article  PubMed  Google Scholar 

  • De Meyts P, Gu JL, Shymko RM, Kaplan BE, Bell GI, Whittaker J (1990) Identification of a ligand-binding region of the human insulin receptor encoded by the second exon of the gene. Mol Endocrinol 4:409–16

    PubMed  Google Scholar 

  • DeFronzo RA (1992) Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia 35:389–97

    Article  PubMed  Google Scholar 

  • Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM, Sturgill TW (1992) Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257:1404–7

    PubMed  Google Scholar 

  • Dent P, Lavoinne A, Nakielny S, Caudwell FB, Watt P, Cohen P (1990) The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348:302–8

    Article  PubMed  Google Scholar 

  • Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 272:17269–75

    Article  PubMed  Google Scholar 

  • Deuter-Reinhard M, Apell G, Pot D, Klippel A, Williams LT, Kavanaugh WM (1997) SIP/SHIP inhibits Xenopus oocyte maturation induced by insulin and phosphatidylinositol 3-kinase. Mol Cell Biol 17:2559–65

    PubMed  Google Scholar 

  • Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I, Totty NF, Truong O, Vicendo P, Yonezawa K, et al. (1994) PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. Embo J 13:522–33

    PubMed  Google Scholar 

  • Dong LQ, Farris S, Christal J, Liu F (1997) Site-directed mutagenesis and yeast two-hybrid studies of the insulin and insulin-like growth factor-1 receptors: the Src homology-2 domain-containing protein hGrb10 binds to the autophosphorylated tyrosine residues in the kinase domain of the insulin receptor. Mol Endocrinol 11:1757–65

    Article  PubMed  Google Scholar 

  • Drayer AL, Pesesse X, De Smedt F, Communi D, Moreau C, Erneaux C (1996) The family of inositol and phosphatidylinositol polyphosphate 5-phosphatases. Biochem Soc Trans 24:1001–5

    PubMed  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–9

    PubMed  Google Scholar 

  • Ebina Y, Araki E, Taira M, Shimada R, Mori M, Craik CS, Siddle K, Pierce SB, Roth RA, Rutter WJ (1987) Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin-and antibody-stimulated glucose uptake and receptor kinase activity. Proc Natl Acad Sci USA 84:704–708

    PubMed  Google Scholar 

  • Ebina Y, Edery M, Ellis L, Standring D, Beaudoin J, Roth RA, Rutter WJ (1985a) Expression of a functional human insulin receptor from a cloned cDNA in Chinese hamster ovary cells. Proc Natl Acad Sci USA 82:8014–8018

    PubMed  Google Scholar 

  • Ebina Y, Ellis L, Jamajin K, Edery M, Graf L, Clauser E, Ou J, Masiarz F, Kan YF, Goldfine ID, Roth RA, Rutter WJ (1985b) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signaling. Cell 40:747–758

    Article  PubMed  Google Scholar 

  • Eck MJ, Dhe-Paganon S, Trub T, Nolte RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695–705

    Article  PubMed  Google Scholar 

  • Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 94:9660–4

    Article  PubMed  Google Scholar 

  • Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ (1986) Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 45:721–732

    Article  PubMed  Google Scholar 

  • Ellis L, Morgan DO, Clauser E, Roth RA, Rutter WJ (1987) A membrane-anchored cytoplasmic domain of the human insulin receptor mediates a constitutively elevated insulin-independent uptake of 2-deoxyglucose. Mol Endocrinol 1:15–24

    PubMed  Google Scholar 

  • Elmendorf JS, Chen D, Pessin JE (1998) Guanosine 5′-O-(3-thiotriphosphate) (GTPgammaS) stimulation of GLUT4 translocation is tyrosine kinase-dependent. J Biol Chem 273:13289–96

    Article  PubMed  Google Scholar 

  • Endemann G, Yonezawa K, Roth RA (1990) Phosphatidylinositol kinase or an associated protein is a substrate for the insulin receptor tyrosine kinase. J Biol Chem 265:396–400

    PubMed  Google Scholar 

  • Etgen GJ, Jr., Wilson CM, Jensen J, Cushman SW, Ivy JL (1996) Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. Am J Physiol 271:E294–301

    PubMed  Google Scholar 

  • Evans JL, Honer CM, Womelsdorf BE, Kaplan EL, Bell PA (1995) The effects of wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, on insulinstimulated glucose transport, GLUT4 translocation, antilipolysis, and DNA synthesis. Cell Signal 7:365–76

    Article  PubMed  Google Scholar 

  • Fantin VR, Sparling JD, Slot JW, Keller SR, Lienhard GE, Lavan BE (1998) Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. J Biol Chem 273:10726–32

    Article  PubMed  Google Scholar 

  • Feener EP, Backer JM, King GL, Wilden PA, Sun XJ, Kahn CR, White MF (1993) Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor. J Biol Chem 268:11256–11264

    PubMed  Google Scholar 

  • Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A (1993) Tumor necrosis factor α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 268:26055–26058

    PubMed  Google Scholar 

  • Fiddes RJ, Campbell DH, Janes PW, Sivertsen SP, Sasaki H, Wallasch C, Daly RJ (1998) Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. J Biol Chem 273:7717–24

    Article  PubMed  Google Scholar 

  • Filippis A, Clark S, Proietto J (1997) Increased flux through the hexosamine biosynthesis pathway inhibits glucose transport acutely by activation of protein kinase C. Biochem J 324:981–5

    PubMed  Google Scholar 

  • Filippis A, Clark S, Proietto J (1998) Possible role for gp160 in constitutive but not insulin-stimulated GLUT4 trafficking: dissociation of gp160 and GLUT4 localization. Biochem J 330:405–11

    PubMed  Google Scholar 

  • Fingar DC, Birnbaum MJ (1994) A role for raf-1 in the divergent signaling pathways mediating insulin-stimulated glucose transport. J Biol Chem 269:10127–10132

    PubMed  Google Scholar 

  • Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–36

    Article  PubMed  Google Scholar 

  • Frantz JD, Giorgetti-Peraldi S, Ottinger EA, Shoelson SE (1997) Human GRB-IRβ/GRB 10: splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. J Biol Chem 272:2659–2667

    Article  PubMed  Google Scholar 

  • Freund GG, Wittig JG, Mooney RA (1995) The PI3-kinase serine kinase phosphorylates its p85 subunit and IRS-1 in PI3-kinase/IRS-1 complexes. Biochem Biophys Res Commun 206:272–8

    Article  PubMed  Google Scholar 

  • Frevert EU, Kahn BB (1997) Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol 17:190–8

    PubMed  Google Scholar 

  • Frevert EU, Bjorbaek C, Veneble CL, Keller SR, Kahn BB (1998) Targeting of constitutively active phosphohinositide 3-kinase to GLUT4-containing vesicles in 3T3-L1 adipocytes. J Biol Chem. 273:25480–25487

    Article  PubMed  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    PubMed  Google Scholar 

  • Friedman JM (1998) Leptin, leptin receptors, and the control of body weight. Nutr Rev 56:s38–46; discussion s54–75

    Google Scholar 

  • Fry MJ (1994) Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1226:237–68

    PubMed  Google Scholar 

  • Furnari FB, Lin H, Huang HS, Cavenee WK (1997) Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 94:12479–84

    Article  PubMed  Google Scholar 

  • Furnsinn C, Brunmair B, Furtmuller R, Roden M, Englisch R, Waldhausl W (1998) Failure of leptin to affect basal and insulin-stimulated glucose metabolism of rat skeletal muscle in vitro. Diabetologia 41:524–9

    Article  PubMed  Google Scholar 

  • Furnsinn C, Sanderson AL, Radda GK, Leighton B (1995) Effects of glucosamine on insulin-stimulated glucose metabolism in rat soleus muscle. Int J Biochem Cell Biol 27:805–14

    Article  PubMed  Google Scholar 

  • Gao Z, Konrad RJ, Collins H, Matschinsky FM, Rothenberg PL, Wolf BA (1996) Wortmannin inhibits insulin secretion in pancreatic islets and beta-TC3 cells independent of its inhibition of phosphatidylinositol 3-kinase. Diabetes 45:854–62

    PubMed  Google Scholar 

  • Garippa RJ, Judge TW, James DE, McGraw TE (1994) The amino terminus of GLUT4 functions as an internalization motif but not an intracellular retention signal when substituted for the transferrin receptor cytoplasmic domain. J Cell Biol 124:705–15

    Article  PubMed  Google Scholar 

  • Garrett TP, McKern NM, Lou M, Frenkel MJ, Bentley JD, Lovrecz GO, Elleman TC, Cosgrove LJ, Ward CW (1998) Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394:395–9

    Article  PubMed  Google Scholar 

  • Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–86

    PubMed  Google Scholar 

  • Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG (1985) The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus. Diabetes 34:222–34

    PubMed  Google Scholar 

  • Garvey WT, Olefsky JM, Marshall S (1986) Insulin induces progressive insulin resistance in cultured rat adipocytes. Sequential effects at receptor and multiple postreceptor sites. Diabetes 35:258–67

    PubMed  Google Scholar 

  • Garvey WT, Olefsky JM, Matthaei S, Marshall S (1987) Glucose and insulin coregulate the glucose transport system in primary cultured adipocytes. A new mechanism of insulin resistance. J Biol Chem 262:189–97

    PubMed  Google Scholar 

  • Gibbs EM, Stock JL, McCoid SC, Stukenbrok HA, Pessin JE, Stevenson RW, Milici AJ, McNeish JD (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest 95:1512–8

    PubMed  Google Scholar 

  • Giorgetti S, Pelicci PG, Pelicci G, Van Obberghen E (1994) Involvement of Srchomology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin-like-growth-factor-I-receptor. Eur J Biochem 223:195–202

    Article  PubMed  Google Scholar 

  • Girard J (1997) Is leptin the link between obesity and insulin resistance? Diabetes Metab 23 Suppl 3:16–24

    Google Scholar 

  • Gnudi L, Frevert EU, Houseknecht KL, Erhardt P, Kahn BB (1997) Adenovirus-mediated gene transfer of dominant negative ras(asn17) in 3T3L1 adipocytes does not alter insulin-stimulated P13-kinase activity or glucose transport. Mol Endocrinol 11:67–76

    Article  PubMed  Google Scholar 

  • Gnudi L, Shepherd PR, Kahn BB (1996) Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: implications for nutrient partitioning. Proc Nutr Soc 55:191–9

    PubMed  Google Scholar 

  • Gnudi L, Tozzo E, Shepherd PR, Bliss JL, Kahn BB (1995) High level overexpression of glucose transporter-4 driven by an adipose-specific promoter is maintained in transgenic mice on a high fat diet, but does not prevent impaired glucose tolerance. Endocrinology 136:995–1002

    Article  PubMed  Google Scholar 

  • Goldstein BJ, Li PM, Ding W, Ahmad F, Zhang WR (1998) Regulation of insulin action by protein tyrosine phosphatases. Vitam Horm 54:67–96

    PubMed  Google Scholar 

  • Goodyear LJ, Kahn BB (1998) Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49:235–61

    Article  PubMed  Google Scholar 

  • Gottlieb MS (1980) Diabetes in offspring and siblings of juvenile-and maturity-onset-type diabetics. J Chronic Dis 33:331–9

    Article  PubMed  Google Scholar 

  • Gronskov K, Vissing H, Shymko RM, Tornqvist H, De Meyts P (1993) Mutation of arginine 86 to proline in the insulin receptor alpha subunit causes lack of transport of the receptor to the plasma membrane, loss of binding affinity and a constitutively activated tyrosine kinase in transfected cells. Biochem Biophys Res Commun 192:905–11

    Article  PubMed  Google Scholar 

  • Guilherme A, Klarlund JK, Krystal G, Czech MP (1996) Regulation of phosphatidylinositol 3,4,5-trisphosphate 5′-phosphatase activity by insulin. J Biol Chem 271:29533–6

    Article  PubMed  Google Scholar 

  • Gustafson TA, He W, Craparo A, Schaub CD, O'Neill TJ (1995) Phosphotyrosine-dependent interaction of SHC and IRS-1 with the NPEY motif of the insulin receptor via a novel (non-SH2) domain. Mol Cell Biol 15:2500–2508

    PubMed  Google Scholar 

  • Gustafson TA, Rutter WJ (1990) The cysteine-rich domains of the insulin and IGFI receptors are primary determinants of hormone binding specificity: evidence from receptor chimeras. J Biol Chem 265:18663–18667

    PubMed  Google Scholar 

  • Habib T, Hejna JA, Moses RE, Decker SJ (1998) Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J Biol Chem 273:18605–9

    Article  PubMed  Google Scholar 

  • Hajduch E, Aledo JC, Watts C, Hundal HS (1997) Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes. Biochem J 321:233–8

    PubMed  Google Scholar 

  • Hall SS (1987) Invisible frontiers: the race to synthesize a human gene, 1st edn. Atlantic Monthly Press, New York. xiv, 334 pp

    Google Scholar 

  • Hamman RF (1992) Genetic and environmental determinants of non-insulin-dependent diabetes mellitus (NIDDM). Diabetes Metab Rev 8:287–338

    PubMed  Google Scholar 

  • Haney PM, Levy MA, Strube MS, Mueckler M (1995) Insulin-sensitive targeting of the GLUT4 glucose transporter in L6 myoblasts is conferred by its COOH-terminal cytoplasmic tail. J Cell Biol 129:641–58

    Article  PubMed  Google Scholar 

  • Hanpeter D, James DE (1995) Characterization of the intracellular GLUT-4 compartment. Mol Membr Biol 12:263–9

    PubMed  Google Scholar 

  • Hansen H, Svensson U, Zhu J, Laviola L, Giorgino F, G. W, Smith RJ, Riedel H (1996) Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. J Biol Chem 271:8882–8886

    Article  PubMed  Google Scholar 

  • Harbeck MC, Louie DC, Howland J, Wolf BA, Rothenberg PL (1996) Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes 45:711–7

    PubMed  Google Scholar 

  • Haring HU, Tippmer S, Kellerer M, Mosthaf L, Kroder G, Bossenmaier B, Berti L (1996) Modulation of insulin receptor signaling. Potential mechanisms of a cross talk between bradykinin and the insulin receptor. Diabetes 45 Suppl 1:S115–9

    Google Scholar 

  • Haruta T, Morris AJ, Rose DW, Nelson JG, Mueckler M, Olefsky JM (1995) Insulin-stimulated GLUT4 translocation is mediated by a divergent intracellular signaling pathway. J Biol Chem 270:27991–4

    Article  PubMed  Google Scholar 

  • Haruta T, Morris AJ, Vollenweider P, Nelson JG, Rose DW, Mueckler M, Olefsky JM (1998a) Ligand-independent GLUT4 translocation induced by guanosine 5′-O-(3-thiotriphosphate) involves tyrosine phosphorylation. Endocrinology 139:358–64

    Article  PubMed  Google Scholar 

  • Hashimoto N, Feener EP, Zhang WR, Goldstein BJ (1992) Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain. J Biol Chem 267:13811–4

    PubMed  Google Scholar 

  • Hauner H, Rohrig K, Spelleken M, Liu LS, Eckel J (1998) Development of insulin-responsive glucose uptake and GLUT4 expression in differentiating human adipocyte precursor cells. Int J Obes Relat Metab Disord 22:448–53

    Article  PubMed  Google Scholar 

  • Hausdorff SF (1994) Role of p21ras in insulin-stimulated glucose transport in 3T3-L1 adipocytes. J Biol Chem 269:21391–21394

    PubMed  Google Scholar 

  • Hawkins M, Angelov I, Liu R, Barzilai N, Rossetti L (1997a) The tissue concentration of UDP-N-acetylglucosamine modulates the stimulatory effect of insulin on skeletal muscle glucose uptake. J Biol Chem 272:4889–95

    Article  PubMed  Google Scholar 

  • Hawkins M, Barzilai N, Liu R, Hu M, Chen W, Rossetti L (1997b) Role of the glucosamine pathway in fat-induced insulin resistance. J Clin Invest 99:2173–82

    PubMed  Google Scholar 

  • Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337:78–81

    Article  PubMed  Google Scholar 

  • Haystead TA, Weiel JE, Litchfield DW, Tsukitani Y, Fischer EH, Krebs EG (1990) Okadaic acid mimics the action of insulin in stimulating protein kinase activity in isolated adipocytes. The role of protein phosphatase 2a in attenuation of the signal. J Biol Chem 265:16571–80

    PubMed  Google Scholar 

  • He W, Craparo A, Zhu Y, O'Neill TJ, Wang L-M, Pierce JH, Gustafson TA (1996) Interaction of insulin receptor substrate-2 with the insulin and insulin-like growth factor I receptors: evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem 271:11641–5

    Article  PubMed  Google Scholar 

  • He W, O'Neill TJ, Gustafson TA (1995) Distinct modes of interaction of SHC and insulin receptor substrate-1 with the insulin receptor NPEY region via non-SH2 domains. J Biol Chem 270:23258–23262

    Article  PubMed  Google Scholar 

  • He W, Rose DW, Olefsky JM, Gustafson TA (1998) Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem 273:6860–7

    Article  PubMed  Google Scholar 

  • Hebert LF, Jr., Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, Neidigh JL, Zhu JS, Baron AD, McClain DA (1996) Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 98:930–6

    PubMed  Google Scholar 

  • Heller-Harrison RA, Morin M, Czech MP (1995) Insulin regulation of membrane-associated insulin receptor substrate 1. J Biol Chem 270:24442–50

    Article  PubMed  Google Scholar 

  • Heller-Harrison RA, Morin M, Guilherme A, Czech MP (1996) Insulin-mediated targeting of phosphatidylinositol 3-kinase to GLUT4-containing vesicles. J Biol Chem 271:10200–4

    Article  PubMed  Google Scholar 

  • Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR (1997) Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol 272:E600–6

    PubMed  Google Scholar 

  • Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF-and insulin-receptor signalling. Nature 379:560–4

    Article  PubMed  Google Scholar 

  • Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ (1997) Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci USA 94:12419–24

    Article  PubMed  Google Scholar 

  • Hosomi Y, Shii K, Ogawa W, Matsuba H, Yoshida M, Okada Y, Yokono K, Kasuga M, Baba S, Roth RA (1994) Characterization of a 60-kilodalton substrate of the insulin receptor kinase. J Biol Chem 269:11498–502

    PubMed  Google Scholar 

  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–15

    PubMed  Google Scholar 

  • Hotamisligil GS, Murrau DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor α inhibits signaling from the insulin receptor. Proc Natl. Acad Sci USA 91:4854–4858

    PubMed  Google Scholar 

  • Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 271:665–668

    PubMed  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    PubMed  Google Scholar 

  • Hresko RC, Heimberg H, Chi MMY, Mueckler M (1998) Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. J Biol Chem 273:20658–68

    Article  PubMed  Google Scholar 

  • Huang X, Li Y, Tanaka K, Moore KG, Hayashi JI (1995) Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 92:11618–22

    PubMed  Google Scholar 

  • Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18:172–7

    Article  PubMed  Google Scholar 

  • Hubbard SR (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16:5572–5581

    Article  PubMed  Google Scholar 

  • Hubbard SR, Wei L, Ellis L, W.A. H (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746–754

    Article  PubMed  Google Scholar 

  • Hughes K, Ramakrishna S, Benjamin WB, Woodgett JR (1992) Identification of multifunctional ATP-citrate lyase kinase as the alpha-isoform of glycogen synthase kinase-3. Biochem J 288:309–14

    PubMed  Google Scholar 

  • Hunnicutt JW, Hardy RW, Williford J, McDonald JM (1994) Saturated fatty acid-induced insulin resistance in rat adipocytes. Diabetes 43:540–5

    PubMed  Google Scholar 

  • Ikemoto S, Thompson KS, Itakura H, Lane MD, Ezaki O (1995) Expression of an insulin-responsive glucose transporter (GLUT4) minigene in transgenic mice: effect of exercise and role in glucose homeostasis. Proc Natl Acad Sci USA 92:865–9

    PubMed  Google Scholar 

  • Isakoff S, J., Taha C, Rose E, Marcusohn J, Klip A, Skolnik E, Y. (1995) The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake. Proc Natl Acad Sci USA 92:10247–51

    PubMed  Google Scholar 

  • Isakoff SJ, Yu YP, Su YC, Blaikie P, Yajnik V, Rose E, Weidner KM, Sachs M, Margolis B, Skolnik EY (1996) Interaction between the phosphotyrosine binding domain of Shc and the insulin receptor is required for Shc phosphorylation by insulin in vivo. J Biol Chem 271:3959–3962

    Article  PubMed  Google Scholar 

  • Ishihara H, Sasaoka T, Ishiki M, Takata Y, Imamura T, Usui I, Langlois WJ, Sawa T, Kobayashi M (1997) Functional importance of Shc tyrosine 317 on insulin signaling in Rat1 fibroblasts expressing insulin receptors. J Biol Chem 272:9581–6

    Article  PubMed  Google Scholar 

  • James DE, Piper RC (1994) Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J Cell Biol 126:1123–6

    Article  PubMed  Google Scholar 

  • Jiang T, Sweeney G, Rudolf MT, Klip A, Traynor-Kaplan A, Tsien RY (1998) Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:11017–24

    Article  PubMed  Google Scholar 

  • Jullien D, Tanti JF, Heydrick SJ, Gautier N, Gremeaux T, Van Obberghen E, Le Marchand-Brustel Y (1993) Differential effects of okadaic acid on insulin-stimulated glucose and amino acid uptake and phosphatidylinositol 3-kinase activity. J Biol Chem 268:15246–51

    PubMed  Google Scholar 

  • Kaburagi Y, Satoh S, Tamemoto H, Yamamoto-Honda R, Tobe K, Veki K, Yamauchi T, Kono-Sugita E, Sekihara H, Aizawa S, Cushman SW, Akanuma Y, Yazaki Y, Kadowaki T (1997) Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 272:25839–44

    Article  PubMed  Google Scholar 

  • Kaburagi Y, Yamamoto-Honda R, Tobe K, Ueki K, Yachi M, Akanuma Y, Stephens RM, Kaplan D, Yazaki Y, Kadowaki T (1995) The role of the NPXY motif in the insulin receptor in tyrosine phosphorylation of insulin receptor substrate-1 and Shc. Endocrinology 136:3437–43

    Article  PubMed  Google Scholar 

  • Kadowaki T, Tamemoto H, Tobe K, Terauchi Y, Ueki K, Kaburagi Y, Yamauchi T, Satoh S, Sekihara H, Aizawa S, Yazaki Y (1996) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 and identification of insulin receptor substrate-2. Diabet Med 13:S103–8

    PubMed  Google Scholar 

  • Kahn BB (1996) 1995. Glucose transport: pivotal step in insulin action. Diabetes 45:1644–54

    PubMed  Google Scholar 

  • Kahn CR (1994) Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43:1066–84

    PubMed  Google Scholar 

  • Kahn CR, Vicent D, Doria A (1996) Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu Rev Med 47:509–31

    Article  PubMed  Google Scholar 

  • Kandror K, Pilch PF (1994) Identification and isolation of glycoproteins that translocate to the cell surface from GLUT4-enriched vesicles in an insulin-dependent fashion. J Biol Chem 269:138–42

    PubMed  Google Scholar 

  • Kandror KV, Pilch PF (1996a) Compartmentalization of protein traffic in insulin-sensitive cells. Am J Physiol 271:E1–14

    PubMed  Google Scholar 

  • Kandror KV, Pilch PF (1996b) The insulin-like growth factor II/mannose 6-phosphate receptor utilizes the same membrane compartments as GLUT4 for insulin-dependent trafficking to and from the rat adipocyte cell surface. J Biol Chem 271:21703–8

    Article  PubMed  Google Scholar 

  • Kandror KV, Yu L, Pilch PF (1994) The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem 269:30777–80

    PubMed  Google Scholar 

  • Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A (1995) Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem 270:23780–4

    Article  PubMed  Google Scholar 

  • Kanety H, Hemi R, Papa MZ, Karasik A (1996) Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1. J Biol Chem 271:9895–7

    Article  PubMed  Google Scholar 

  • Kao AW, Waters SB, Okada S, Pessin JE (1997) Insulin stimulates the phosphorylation of the 66-and 52-kilodalton Shc isoforms by distinct pathways. Endocrinology 138:2474–80

    Article  PubMed  Google Scholar 

  • Kasuga M, Izumi T, Tobe K, Shiba T, Momomura K, Kadowaki T (1990) Substrates for insulin receptor kinase. Diabetes Care 13:317–326

    PubMed  Google Scholar 

  • Kasuga M, Karlsson FA, Kahn CR (1982) Insulin stimulates the phosphorylation of the 95,000 dalton subunit of its own receptor. Science 215:185–187

    PubMed  Google Scholar 

  • Katagiri H, Asano T, Inukai K, Ogihara T, Ishihara H, Shibasaki Y, Murata T, Terasaki J, Kikuchi M, Yazaki Y, Oka Y (1997) Roles of PI 3-kinase and Ras on insulin-stimulated glucose transport in 3T3-L1 adipocytes. Am J Physiol 272:E326–31

    PubMed  Google Scholar 

  • Katagiri H, Asano T, Ishihara H, Inukai K, Shibasaki Y, Kikuchi M, Yazaki Y, Oka Y (1996) Overexpression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J Biol Chem 271:16987–90

    Article  PubMed  Google Scholar 

  • Katz EB, Stenbit AE, Mattan K, DePinho R, Charron MJ (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377:151–5

    Article  PubMed  Google Scholar 

  • Katz EB, Burcelin R, Tsao TS, Stenbit AE, Charron MJ (1996) The metabolic consequences of altered glucose transporter expression in transgenic mice. J Mol Med 74:639–52

    Article  PubMed  Google Scholar 

  • Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AB, Norris FA, Masiarz FR, Cousens LS, Majerus PW, Williams LT (1996) Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2. Curr Biol 6:438–45

    Article  PubMed  Google Scholar 

  • Kavanaugh WM, Williams LT (1994) An alternative to SH2 domains for binding to tyrosine-phosphorylated receptors. Science 266:1862–1865

    PubMed  Google Scholar 

  • Keller SR, Aebersold R, Garner CW, Lienhard GE (1993a) The insulin-elicited 160 kDa phosphotyrosine protein in mouse adipocytes is an insulin receptor substrate 1: identification by cloning. Biochim Biophys Acta 1172:323–6

    PubMed  Google Scholar 

  • Keller SR, Lamphere L, Lavan BE, Kuhne MR, Lienhard GE (1993b) Insulin and IGF-I signaling through the insulin receptor substrate 1. Mol Reprod Dev 35:346–51; discussion 351–2

    Article  PubMed  Google Scholar 

  • Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 270:23612–8

    Article  PubMed  Google Scholar 

  • Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU (1997) Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40:1358–62

    Article  PubMed  Google Scholar 

  • Kellerer M, Mushack J, Seffer E, Mischak H, Ullrich A, Haring HU (1998) Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the tyrosine kinase activity of the insulin receptor in human kidney embryonic cells (HEK 293 cells). Diabetologia 41:833–8

    Article  PubMed  Google Scholar 

  • Kelly KL, Ruderman NB, Chen KS (1992) Phosphatidylinositol-3-kinase in isolated rat adipocytes. Activation by insulin and subcellular distribution. J Biol Chem 267:3423–8

    PubMed  Google Scholar 

  • Kenner KA, Anyanwu E, Olefsky JM, Kusari J (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin-and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271:19810–6

    Article  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–4

    Article  PubMed  Google Scholar 

  • Kimball SR, Jurasinski CV, Lawrence JC, Jr., Jefferson LS (1997) Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4G. Am J Physiol 272:C754–9

    PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–6

    Article  PubMed  Google Scholar 

  • Kishi K, Hayashi H, Wang L, Kamohara S, Tamaoka K, Shimizu T, Ushikubi F, Narumiya S, Ebina Y (1996) Gq-coupled receptors transmit the signal for GLUT4 translocation via an insulin-independent pathway. J Biol Chem 271:26561–8

    Article  PubMed  Google Scholar 

  • Kishi K, Muromoto N, Nakaya Y, Miyata I, Hagi A, Hayashi H, Ebina Y (1998) Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 47:550–8

    PubMed  Google Scholar 

  • Kitamura T, Ogawa W, Sakaue H, Hino Y, Kuroda S, Takata M, Matsumoto M, Maeda T, Konishi H, Kikkawa U, Kasuga M (1998) Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol 18:3708–17

    PubMed  Google Scholar 

  • Kjeldsen T, Wiberg FC, Andersen AS (1994) Chimeric receptors indicate that phenylalanine 39 is a major contributor to insulin specificity of the insulin receptor. J Biol Chem 269:32942–6

    PubMed  Google Scholar 

  • Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 16:4117–27

    PubMed  Google Scholar 

  • Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990) Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6:1–27

    PubMed  Google Scholar 

  • Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JC, Jr., Roth RA (1998) Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem 273:11937–43

    Article  PubMed  Google Scholar 

  • Kohn AD, Kovacina KS, Roth RA (1995) Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. Embo J 14:4288–95

    PubMed  Google Scholar 

  • Kohn AD, Summers SA, Birnbaum MJ, Roth RA (1996) Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271:31372–8

    Article  PubMed  Google Scholar 

  • Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995) Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun 216:526–34

    Article  PubMed  Google Scholar 

  • Koval AP, Karas M, Zick Y, LeRoith D (1998) Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction. J Biol Chem 273:14780–7

    Article  PubMed  Google Scholar 

  • Kozka IJ, Clark AE, Holman GD (1991) Chronic treatment with insulin selectively down-regulates cell-surface GLUT4 glucose transporters in 3T3-L1 adipocytes. J Biol Chem 266:11726–31

    PubMed  Google Scholar 

  • Kreutter DK, Andrews KM, Gibbs EM, Hutson NJ, Stevenson RW (1990) Insulinlike activity of new antidiabetic agent CP 68722 in 3T3-L1 adipocytes. Diabetes 39:1414–9

    PubMed  Google Scholar 

  • Krisman CR, Barengo R (1975) A precursor of glycogen biosynthesis: alpha-1,4-glucan-protein. Eur J Biochem 52:117–23

    Article  PubMed  Google Scholar 

  • Kuhne MR, Zhao Z, Lienhard GE (1995) Evidence against dephosphorylation of insulin-elicited phosphotyrosine proteins in vivo by the phosphatase PTP2C. Biochem Biophys Res Commun 211:190–7

    Article  PubMed  Google Scholar 

  • Kuhne MR, Zhao Z, Rowles J, Lavan BE, Shen SH, Fischer EH, Lienhard GE (1994) Dephosphorylation of insulin receptor substrate 1 by the tyrosine phosphatase PTP2C. J Biol Chem 269:15833–7

    PubMed  Google Scholar 

  • Kulas DT, Zhang WR, Goldstein BJ, Furlanetto RW, Mooney RA (1995) Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J Biol Chem 270:2435–8

    Article  PubMed  Google Scholar 

  • Kulkarni RN, Bruning JC, Winnay JN, Magnuson MA, Kahn CR (1998) Tissuespecific disruption of the insulin receptor in the pancreatic beta cell results in impaired gluycose tolerance. Diabetes 47 (Suppl 1):A57 (0222)

    Google Scholar 

  • Kusari J, Kenner KA, Suh KI, Hill DE, Henry RR (1994) Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 93:1156–62

    PubMed  Google Scholar 

  • Kwok SC, Steiner DF, Rubenstein AH, Tager HS (1983) Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes 32:872–5

    PubMed  Google Scholar 

  • Lam K, Carpenter CL, Ruderman NB, Friel JC, Kelly KL (1994) The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J Biol Chem 269:20648–52

    PubMed  Google Scholar 

  • Lamphere L, Carpenter CL, Sheng ZF, Kallen RG, Lienhard GE (1994) Activation of PI 3-kinase in 3T3-L1 adipocytes by association with insulin receptor substrate-1. Am J Physiol 266:E486–94

    PubMed  Google Scholar 

  • Larner J, Villar-Palasi C, Goldberg ND, Bishop JS, Huijing F, Wenger JI, Sasko H, Brown NB (1968) Hormonal and non-hormonal control of glycogen synthesis-control of transferase phosphatase and transferase I kinase. Adv Enzyme Regul 6:409–23

    Article  PubMed  Google Scholar 

  • Laurie SM, Cain CC, Lienhard GE, Castle JD (1993) The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 268:19110–7

    PubMed  Google Scholar 

  • Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE (1997a) A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 272:21403–7

    Article  PubMed  Google Scholar 

  • Lavan BE, Lane WS, Lienhard GE (1997b) The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 272:11439–43

    Article  PubMed  Google Scholar 

  • Lavan BE, Lienhard GE (1993) The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem 268:5921–8

    PubMed  Google Scholar 

  • Laviola L, Giorgino F, Chow JC, Baquero JA, Hansen H, Ooi J, J. Z, Riedel H, Smith RJ (1997) The adapter protein Grb10 associates preferentially with the insulin receptor as compared with the IGF-I receptor in mouse fibroblasts. J Clin Invest 99:830–837

    PubMed  Google Scholar 

  • Lawrence JC, Jr., Fadden P, Haystead TA, Lin TA (1997) PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Adv Enzyme Regul 37:239–67

    Article  PubMed  Google Scholar 

  • Lawrence JC, Jr., Hiken JF, DePaoli-Roach AA, Roach PJ (1983) Hormonal control of glycogen synthase in rat hemidiaphragms. Effects of insulin and epinephrine on the distribution of phosphate between two cyanogen bromide fragments. J Biol Chem 258:10710–9

    PubMed  Google Scholar 

  • Lawrence JC, Jr., Hiken JF, James DE (1990) Stimulation of glucose transport and glucose transporter phosphorylation by okadaic acid in rat adipocytes. J Biol Chem 265:19768–76

    PubMed  Google Scholar 

  • Lawrence JC, Jr., Roach PJ (1997) New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes 46:541–7

    PubMed  Google Scholar 

  • Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatrecasas P, Saltiel AR (1995) Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 270:20801–7

    Article  PubMed  Google Scholar 

  • Le Marchand-Brustel Y, Gautier N, Cormont M, Van Obberghen E (1995) Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology 136:3564–70

    Article  PubMed  Google Scholar 

  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–5

    Article  PubMed  Google Scholar 

  • Lee W, Jung CY (1997) A synthetic peptide corresponding to the GLUT4 C-terminal cytoplasmic domain causes insulin-like glucose transport stimulation and GLUT4 recruitment in rat adipocytes. J Biol Chem 272:21427–31

    Article  PubMed  Google Scholar 

  • Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–4

    Article  PubMed  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–6

    Article  PubMed  Google Scholar 

  • Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J (1996) Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes 45:23–7

    PubMed  Google Scholar 

  • Levy-Toledano R, Taouis M, Blaettler DH, Gorden P, Taylor SI (1994) Insulin-induced activation of phosphatidyl Inositol 3-kinase: demonstration that the p85 subunit binds directly to the COOH terminus of the insulin receptor in intact cells. J Biol Chem 269:31178–31182

    PubMed  Google Scholar 

  • Lewis RE, Volle DJ, Sanderson SD (1994) Phorbol ester stimulates phosphorylation on serine 1327 of the human insulin receptor. J Biol Chem 269:26259–66

    PubMed  Google Scholar 

  • Li PM, Goldstein BJ (1996) Differential regulation of insulin-stimulated tyrosine phosphorylation of IRS-1 and SHC by Wortmannin in intact cells. Biochem Biophys Res Commun 223:80–4

    Article  PubMed  Google Scholar 

  • Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R (1997) MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci USA 94:12431–6

    Article  PubMed  Google Scholar 

  • Lienhard GE, Slot JW, James DE, Mueckler MM (1992) How cells absorb glucose. Sci Am 266:86–91

    Google Scholar 

  • Lin BZ, Pilch PF, Kandror KV (1997a) Sortilin is a major protein component of Glut4-containing vesicles. J Biol Chem 272:24145–7

    Article  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997b) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–22

    Article  PubMed  Google Scholar 

  • Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, Lawrence JC, Jr. (1994) PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–6

    PubMed  Google Scholar 

  • Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC, Jr. (1995) Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem 270:18531–8

    Article  PubMed  Google Scholar 

  • Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR (1996) p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 10:1084–95

    PubMed  Google Scholar 

  • Liu F, Roth R (1995) Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function. Proc Natl Acad Sci USA 92:10287–10291

    PubMed  Google Scholar 

  • Liu F, Roth RA (1994) Identification of serines-1035/1037 in the kinase domain of the insulin receptor as protein kinase C alpha mediated phosphorylation sites. FEBS Lett 352:389–92

    Article  PubMed  Google Scholar 

  • Liu LS, Spelleken M, Rohrig K, Hauner H, Eckel J (1998) Tumor necrosis factor-alpha acutely inhibits insulin signaling in human adipocytes: implication of the p80 tumor necrosis factor receptor. Diabetes 47:515–22

    PubMed  Google Scholar 

  • Livingstone C, James DE, Rice JE, Hanpeter D, Gould GW (1996) Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochem J 315:487–95

    PubMed  Google Scholar 

  • Lund S, Holman GD, Schmitz O, Pedersen O (1995) Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA 92:5817–21

    PubMed  Google Scholar 

  • Macaulay SL, Hewish DR, Gough KH, Stoichevska V, MacPherson SF, Jagadish M, Ward CW (1997a) Functional studies in 3T3L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation. Biochem J 324:217–24

    PubMed  Google Scholar 

  • Macaulay SL, Rea S, Gough KH, Ward CW, James DE (1997b) Botulinum E toxin light chain does not cleave SNAP-23 and only partially impairs insulin stimulation of GLUT4 translocation in 3T3-L1 cells. Biochem Biophys Res Commun 237:388–93

    Article  PubMed  Google Scholar 

  • Maegawa H, Olefsky JM, Thies S, Boyd D, Ullrich A, McClain DA (1988) Insulin receptors with defective tyrosine kinase inhibit normal receptor function at the level of substrate phosphorylation. J Biol Chem 263:12629–37

    PubMed  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–8

    Article  PubMed  Google Scholar 

  • Maggs DG, Buchanan TA, Burant CF, Cline G, Gumbiner B, Hsueh WA, Inzucchi S, Kelley D, Nolan J, Olefsky JM, Polonsky KS, Silver D, Valiquett TR, Shulman GI (1998) Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 128:176–85

    PubMed  Google Scholar 

  • Magun R, Burgering BM, Coffer PJ, Pardasani D, Lin Y, Chabot J, Sorisky A (1996) Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation. Endocrinology 137:3590–3

    Article  PubMed  Google Scholar 

  • Malide D, Dwyer NK, Blanchette-Mackie EJ, Cushman SW (1997) Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP2-positive compartment in rat adipose cells in the absence of insulin. J Histochem Cytochem 45:1083–96

    PubMed  Google Scholar 

  • Manser J, Roonprapunt C, Margolis B (1997) C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev Biol 184:150–64

    Article  PubMed  Google Scholar 

  • Margolis B (1996) The PI/PTB domain: a new protein interaction domain involved in growth factor receptor signaling. J Lab Clin Med 128:235–41

    Article  PubMed  Google Scholar 

  • Margolis B, Silvennoinen O, Comoglio F, Roonprapunt C, Skolnik E, Ullrich A, Schlessinger J (1992) High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with src homology 2 domains. Proc Natl Acad Sci USA 89:8894–8898

    PubMed  Google Scholar 

  • Marshall S, Garvey WT, Traxinger RR (1991) New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids. Faseb J 5:3031–6

    PubMed  Google Scholar 

  • Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR (1992a) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–9

    Article  PubMed  Google Scholar 

  • Martin BC, Warram JH, Rosner B, Rich SS, Soeldner JS, Krolewski AS (1992b) Familial clustering of insulin sensitivity. Diabetes 41:850–4

    PubMed  Google Scholar 

  • Martin LB, Shewan A, Millar CA, Gould GW, James DE (1998) Vesicle-associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3-L1 adipocytes. J Biol Chem 273:1444–52

    Article  PubMed  Google Scholar 

  • Martin S, Rice JE, Gould GW, Keller SR, Slot JW, James DE (1997) The glucose transporter GLUT4 and the aminopeptidase vp165 colocalise in tubulo-vesicular elements in adipocytes and cardiomyocytes. J Cell Sci 110:2281–91

    PubMed  Google Scholar 

  • Martin S, Tellam J, Livingstone C, Slot JW, gould GW, James DE (1996a) The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells. J Cell Biol 134:625–35

    Article  PubMed  Google Scholar 

  • Martin SS, Haruta T, Morris AJ, Klippel A, Williams LT, Olefsky JM (1996b) Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes. J Biol Chem 271:17605–8

    Article  PubMed  Google Scholar 

  • Mastick CC, Aebersold R, Lienhard GE (1994) Characterization of a major protein in GLUT4 vesicles. Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane. J Biol Chem 269:6089–92

    PubMed  Google Scholar 

  • Matschinsky F, Liang Y, Kesavan P, Wang L, Froguel P, Velho G, Cohen D, Permutt MA, Tanizawa Y, Jetton TL, et al. (1993) Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 92:2092–8

    PubMed  Google Scholar 

  • Matschinsky FM (1993) Evolution of the glucokinase glucose sensor paradigm for pancreatic beta cells [letter; comment]. Diabetologia 36:1215–7

    Article  PubMed  Google Scholar 

  • Mauro LJ, Dixon JE (1994) ‘Zip codes’ direct intracellular protein tyrosine phosphatases to the correct cellular ‘address'. Trends Biochem Sci 19:151–5

    Article  PubMed  Google Scholar 

  • McClain DA (1991) Different ligand affinities of the two human insulin receptor splice variants are reflected in parallel changes in sensitivity for insulin action. Mol Endocrinol 5:734–9

    PubMed  Google Scholar 

  • McClain DA, Crook ED (1996) Hexosamines and insulin resistance. Diabetes 45:1003–9

    PubMed  Google Scholar 

  • McCormick F (1993) Signal transduction. How receptors turn Ras on [news; comment]. Nature 363:15–6

    Article  PubMed  Google Scholar 

  • McKern NM, Lou M, Frenkel MJ, Verkuylen A, Bentley JD, Lovrecz GO, Ivancic N, Elleman TC, Garrett TP, Cosgrove LJ, Ward CW (1997) Crystallization of the first three domains of the human insulin-like growth factor-1 receptor. Protein Sci 6:2663–6

    PubMed  Google Scholar 

  • Meinders AE, Toornvliet AC, Pijl H (1996) Leptin. Neth J Med 49:247–52

    Article  PubMed  Google Scholar 

  • Meyerovitch J, Backer JM, Kahn CR (1989) Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats. J Clin Invest 84:976–83

    PubMed  Google Scholar 

  • Michael MD, Bruning JC, winnay JM, Hirshman MF, Hayashi T, Kahn CR (1998) Muscle-specific insulin receptor knockout in mice. Diabetes 47 (Suppl 1):A45 (0175)

    Google Scholar 

  • Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. Embo J 16:706–16

    Article  PubMed  Google Scholar 

  • Mikol V, Baumann G, Zurini MG, Hommel U (1995) Crystal structure of the SH2 domain from the adaptor protein SHC: a model for peptide binding based on X-ray and NMR data. J Mol Biol 254:86–95

    Article  PubMed  Google Scholar 

  • Milarski KL, Lazar DF, Wiese RJ, Saltiel AR (1995) Detection of a 60 kDa tyrosine-phosphorylated protein in insulin-stimulated hepatoma cells that associates with the SH2 domain of phosphatidylinositol 3-kinase. Biochem J 308:579–83

    PubMed  Google Scholar 

  • Millar CA, Campbell LC, Cope DL, Melvin DR, Powell KA, Gould GW (1997) Compartment-ablation studies of GLUT4 distribution in adipocytes: evidence for multiple intracellular pools. Biochem Soc Trans 25:974–7

    PubMed  Google Scholar 

  • Mitchell CA, Brown S, Campbell JK, Munday AD, Speed CJ (1996) Regulation of second messengers by the inositol polyphosphate 5-phosphatases. Biochem Soc Trans 24:994–1000

    PubMed  Google Scholar 

  • Miyoshi N, Kuroiwa Y, Kohda T, Shitara H, Yonekawa H, Kawabe T, Hasegawa H, Barton SC, Surani MA, Kaneko-Ishino T, Ishino F (1998) Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci USA 95:1102–7

    Article  PubMed  Google Scholar 

  • Moller DE, Chang PY, Yaspelkis BB, 3rd, Flier JS, Wallberg-Henriksson H, Ivy JL (1996) Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia. Endocrinology 137:2397–405

    Article  PubMed  Google Scholar 

  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase]. Science 260:1658–61

    PubMed  Google Scholar 

  • Mooney RA, Bordwell KL (1992) Insulin stimulates the tyrosine phosphorylation of a 61-kilodalton protein in rat adipocytes. Endocrinology 130:1533–8

    Article  PubMed  Google Scholar 

  • Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T (1990) Src homology region 2 domains direct protein-protein interaction in signal transduction. Proc Natl Acad Sci USA 87:8622–8626

    PubMed  Google Scholar 

  • Morrione A, Valentinis B, Resnicoff M, Xu S, Baserga R (1997) The role of mGrb10alpha in insulin-like growth factor I-mediated growth. J Biol Chem 272:26382–7

    Article  PubMed  Google Scholar 

  • Morris AJ, Martin SS, Haruta T, Nelson JG, Vollenweider P, Gustafson TA, Mueckler M, Rose DW, Olefsky JM (1996a) Evidence for an insulin receptor substrate independent insulin signaling pathway that mediates insulin-responsive glucose transporter (GLUT4) translocation. Proc Natl Acad Sci USA 93:8401–8406

    Article  PubMed  Google Scholar 

  • Morris DO, Olivier NB, Rosser EJ (1998) Type-1 hypersensitivity reactions to Malassezia pachydermatis extracts in atopic dogs [In Process Citation]. Am J Vet Res 59:836–41

    PubMed  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996b) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–9

    Article  PubMed  Google Scholar 

  • Morris NJ, Ducret A, Aebersold R, Ross SA, Keller SR, Lienhard GE (1997) Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem 272:9388–92

    Article  PubMed  Google Scholar 

  • Morris NJ, Ross SA, Lane WS, Moestrup SK, Petersen CM, Keller SR, Lienhard GE (1998) Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipolytes. J Biol Chem 273:3582–87

    Article  PubMed  Google Scholar 

  • Mosthaf L, Berti L, Kellerer M, Mushack J, Seffer E, Bossenmaier B, Coghlan M, Siddle K, Ullrich A, Haring HU (1995) C-terminus or juxtamembrane deletions in the insulin receptor do not affect the glucose-dependent inhibition of the tyrosine kinase activity. Eur J Biochem 227:787–91

    Article  PubMed  Google Scholar 

  • Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain D (1990) Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J 9:2409–2413

    PubMed  Google Scholar 

  • Mothe I, Van Obberghen E (1996) Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol Chem 271:11222–7

    Article  PubMed  Google Scholar 

  • Moxham CM, Malbon CC (1996) Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature 379:840–4

    Article  PubMed  Google Scholar 

  • Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–25

    Article  PubMed  Google Scholar 

  • Mueckler M, Kruse M, Strube M, Riggs AC, Chiu KC, Permutt MA (1994) A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport activity. J Biol Chem 269:17765–7

    PubMed  Google Scholar 

  • Muller G, Ertl J, Gerl M, Preibisch G (1997) Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 272:10585–93

    Article  PubMed  Google Scholar 

  • Murray AW (1992) Creative blocks: cell cycle checkpoints and feedback controls. Nature 359:599–604

    Article  PubMed  Google Scholar 

  • Myers MG, Backer JM, Siddle K, White MF (1991) The insulin receptor functions normally in Chinese hamster ovary cells after truncation of the C terminus. J Biol Chem 266:10616–23

    PubMed  Google Scholar 

  • Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF (1992) IRS-1 activates phosphatidylinositol 3−-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci 89:10350–10354

    PubMed  Google Scholar 

  • Myers MG, Jr., Grammer TC, Brooks J, Glasheen EM, Wang LM, Sun XJ, Blenis J, Pierce JH, White MF (1995) The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling. J Biol Chem 270:11715–8

    Article  PubMed  Google Scholar 

  • Myers MG, Jr., Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF (1994) Role of IRS-1-GRB-2 complexes in insulin signaling. Mol Cell Biol 14:3577–3587

    PubMed  Google Scholar 

  • Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 94:9052–7

    Article  PubMed  Google Scholar 

  • Myers MP, Tonks NK (1997) PTEN: sometimes taking it off can be better than putting it on [editorial]. Am J Hum Genet 61:1234–8

    Article  PubMed  Google Scholar 

  • Mynarcik DC, Williams PF, Schaffer L, Yu GQ, Whittaker J (1997a) Analog binding properties of insulin receptor mutants. Identification of amino acids interacting with the COOH terminus of the B-chain of the insulin molecule. J Biol Chem 272:2077–81

    Article  PubMed  Google Scholar 

  • Mynarcik DC, Williams PF, Schaffer L, Yu GQ, Whittaker J (1997b) Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding. J Biol Chem 272:18650–5

    Article  PubMed  Google Scholar 

  • Mynarcik DC, Yu GQ, Whittaker J (1996) Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor alpha subunit. J Biol Chem 271:2439–42

    Article  PubMed  Google Scholar 

  • Nakanishi H, Brewer KA, Exton JH (1993) Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268:13–6

    PubMed  Google Scholar 

  • Nave BT, Haigh RJ, Hayward AC, Siddle K, Shepherd PR (1996) Compartment-specific regulation of phosphoinositide 3-kinase by platelet-derived growth factor and insulin in 3T3-L1 adipocytes. Biochem J 318:55–60

    PubMed  Google Scholar 

  • Nelms K, O'Neill TJ, Hubbard S, Gustafson TA, Paul WE (1998) Characterization of an isoform of SH2-B that interacts with the insulin receptor kinase domain: chromosomal location and identification of alternative splice sites. (submitted for publication)

    Google Scholar 

  • Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD (1987) Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 30:763–8

    Article  PubMed  Google Scholar 

  • Nguyen L, Holgado-Madruga M, Maroun C, Fixman ED, Kamikura D, Fournier T, Charest A, Tremblay ML, Wong AJ, Park M (1997) Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J Biol Chem 272:20811–9

    Article  PubMed  Google Scholar 

  • Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J (1994) Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 331:1188–93

    Article  PubMed  Google Scholar 

  • Nolte LA, Hansen PA, Chen MM, Schluter JM, Gulve EA, Holloszy JO (1998) Short-term exposure to tumor necrosis factor-alpha does not affect insulin-stimulated glucose uptake in skeletal muscle. Diabetes 47:721–6

    PubMed  Google Scholar 

  • O'Neill TJ, Craparo A, Gustafson TA (1994) Characterization of an interaction between IRS-1 and the insulin receptor using the “two-hybrid” system. Mol Cell Biol 14:6433–6442

    PubMed  Google Scholar 

  • O'Neill TJ, Rose DW, Pillay TS, Hotta K, Olefsky JM, Gustafson TA (1996) Interaction of a Grb-IR splice variant (a human Grb10 homolog) with the insulin and insulin-like growth factor-I receptors: evidence for a role in mitogenic signaling. J Biol Chem 271:22506–22513

    Article  PubMed  Google Scholar 

  • O'Neill TJ, Zhu Y, Gustafson TA (1997) Interaction of MAD2 with the carboxyl terminus of the insulin receptor but not with the IGFIR. Evidence for release from the insulin receptor after activation. J Biol Chem 272:10035–40

    Article  PubMed  Google Scholar 

  • Oatey PB, Van Weering DH, Dobson SP, Gould GW, Tavare JM (1997) GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Biochem J 327:637–42

    PubMed  Google Scholar 

  • Okada S, Kao AW, Ceresa BP, Blaikie P, Margolis B, Pessin JE (1997) The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-stimulated mitogen-activated protein kinase pathway. J Biol Chem 272:28042–9

    Article  PubMed  Google Scholar 

  • Okada S, Yamauchi K, Pessin JE (1995) Shc isoform-specific tyrosine phosphorylation by the insulin and epidermal growth factor receptors. J Biol Chem 270:20737–41

    Article  PubMed  Google Scholar 

  • Olefsky JM, Nolan JJ (1995) Insulin resistance and non-insulin-dependent diabetes mellitus: cellular and molecular mechanisms. Am J Clin Nutr 61:980S–986S

    PubMed  Google Scholar 

  • Olson AL, Knight JB, Pessin JE (1997) Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulinstimulated GLUT4 translocation in adipocytes. Mol Cell Biol 17:2425–35

    PubMed  Google Scholar 

  • Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–56

    Article  PubMed  Google Scholar 

  • Ooi J, Yajnik V, Immanuel D, Gordon M, Moskow JJ, Buchberg AM, Margolis B (1995) The cloning of Grb10 reveals a new family of SH2 proteins. Oncogene 10:1610–1630

    Google Scholar 

  • Osborne MA, Dalton S, Kochan JP (1995) The yeast tribrid system: genetic detection of transphosphorylated ITAM-SH2 interactions. Biotechnology 13:1474–1478

    Article  PubMed  Google Scholar 

  • Osborne MA, Zenner G, Lubinus M, Zhang X, Songyang Z, Cantley LC, Majerus P, Burn P, Kochan JP (1996) The inositol 5′-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem 271:29271–8

    Article  PubMed  Google Scholar 

  • Ouwens DM, van der Zon GC, Pronk GJ, Bos JL, Moller W, Cheatham B, Kahn CR, Maassen JA (1994) A mutant insulin receptor induces formation of a Shc-growth factor receptor bound protein 2 (Grb2) complex and p21ras-GTP without detectable interaction of insulin receptor substrate 1 (IRS1) with Grb2. Evidence for IRS1-independent p21ras-GTP formation. J Biol Chem 269:33116–22

    PubMed  Google Scholar 

  • Patti ME, Sun X-J, Bruening JC, Araki E, Lipes MA, White MF, Kahn CR (1995) 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J Biol Chem 270:24670–24673

    Article  PubMed  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC, Jr., Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–7

    Article  PubMed  Google Scholar 

  • Pawson T, Schlessinger J (1993) SH2 and SH3 domains. Current Biol 3:434–442

    Article  Google Scholar 

  • Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272:29911–8

    Article  PubMed  Google Scholar 

  • Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG (1992) A novel transforming protein (shc) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104

    Article  PubMed  Google Scholar 

  • Peraldi P, Spiegelman BM (1997) Studies of the mechanism of inhibition of insulin signaling by tumor necrosis factor-alpha. J Endocrinol 155:219–20

    Article  PubMed  Google Scholar 

  • Peraldi P, Xu M, Spiegelman BM (1997) Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 100:1863–9

    PubMed  Google Scholar 

  • Pesesse X, Deleu S, De Smedt F, Drayer L, Erneux C (1997) Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem Biophys Res Commun 239:697–700

    Article  PubMed  Google Scholar 

  • Petruzzelli LM, Ganguly S, Smith CJ, Cobb MH, Rubin CS, Rosen OM (1982) Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta. Proc Natl Acad Sci USA 79:6792–6

    PubMed  Google Scholar 

  • Pilch PF, Czech MP (1980) The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes. J Biol Chem 255:1722–31

    PubMed  Google Scholar 

  • Pillay TS, Xiao S, Olefsky JM (1996) Glucose-induced phosphorylation of the insulin receptor. Functional effects and characterization of phosphorylation sites. J Clin Invest 97:613–20

    PubMed  Google Scholar 

  • Piper RC, Tai C, Slot JW, Hahn CS, Rice CM, Huang H, James DE (1992) The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus. J Cell Biol 117:729–43

    Article  PubMed  Google Scholar 

  • Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M, Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS (1998) Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest 101:2215–22

    PubMed  Google Scholar 

  • Printen JA, Brady MJ, Saltiel AR (1997) PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 275:1475–8

    Article  PubMed  Google Scholar 

  • Pronk GJ, De Vries-Smits AMM, Buday L, Downward J, Maassen JA, Medema RH, Bos JL (1994) Involvement of she in insulin-and epidermal growth factor-induced activation of p21ras. Mol Cell Biol 14:1575–1581

    PubMed  Google Scholar 

  • Pronk GJ, McGlade J, Pelicci G, Pawson T, Bos JL (1993) Insulin-induced phosphorylation of the 46-and 52-kDa Shc proteins. J Biol Chem 268:5748–5753

    PubMed  Google Scholar 

  • Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G (1998) Phosphorylation and activation of p70s6k by PDK1. Science 279:707–10

    Article  PubMed  Google Scholar 

  • Rafaeloff R, Patel R, Yip C, Goldfine ID, Hawley DM (1989) Mutation of the high cysteine region of the human insulin receptor alpha-subunit increases insulin receptor binding affinity and transmembrane signaling. J Biol Chem 264:15900–4

    PubMed  Google Scholar 

  • Rampal AL, Jhun BH, Kim S, Liu H, Manka M, Lachaal M, Spangler RA, Jung CY (1995) Okadaic acid stimulates glucose transport in rat adipocytes by increasing the externalization rate constant of GLUT4 recycling. J Biol Chem 270:3938–43

    Article  PubMed  Google Scholar 

  • Ranganathan S, Ciaraldi TP, Henry RR, Mudaliar S, Kern PA (1998) Lack of effect of leptin on glucose transport, lipoprotein lipase, and insulin action in adipose and muscle cells. Endocrinology 139:2509–13

    Article  PubMed  Google Scholar 

  • Ranganathan S, Davidson MB (1996) Effect of tumor necrosis factor-alpha on basal and insulin-stimulated glucose transport in cultured muscle and fat cells. Metabolism 45:1089–94

    Article  PubMed  Google Scholar 

  • Rea S, James DE (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46:1667–77

    PubMed  Google Scholar 

  • Rea S, Martin LB, McIntosh S, Macaulay SL, Ramsdale T, Baldini G, James DE (1998) Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J Biol Chem 273:18784–92

    Article  PubMed  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–607

    PubMed  Google Scholar 

  • Reaven GM (1995) Pathophysiology of insulin resistance in human disease. Physiol Rev 75:473–86

    PubMed  Google Scholar 

  • Reaven GM, Bernstein R, Davis B, Olefsky JM (1976) Nonketotic diabetes mellitus: insulin deficiency or insulin resistance? Am J Med 60:80–8

    Article  PubMed  Google Scholar 

  • Remesar X, Rafecas I, Fernandez-Lopez JA, Alemany M (1997) Is leptin an insulin counter-regulatory hormone? FEBS Lett 402:9–11

    Article  PubMed  Google Scholar 

  • Ren JM, Li PM, Zhang WR, Sweet LJ, Cline G, Shulman GI, Livingston JN, Goldstein BJ (1998) Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes 47:493–7

    PubMed  Google Scholar 

  • Ren JM, Marshall BA, Mueckler MM, McCaleb M, Amatruda JM, Shulman GI (1995) Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest 95:429–32

    PubMed  Google Scholar 

  • Rice KM, Garner CW (1994) Correlation of the insulin receptor substrate-1 with insulin-responsive deoxyglucose transport in 3T3-L1 adipocytes. Biochem Biophys Res Commun 198:523–30

    Article  PubMed  Google Scholar 

  • Rice KM, Turnbow MA, Garner CW (1993) Insulin stimulates the degradation of IRS-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 190:961–7

    Article  PubMed  Google Scholar 

  • Ricort JM, Tanti JF, Van Obberghen E, Le Marchand-Brustel Y (1995) Alterations in insulin signalling pathway induced by prolonged insulin treatment of 3T3-L1 adipocytes. Diabetologia 38:1148–56

    PubMed  Google Scholar 

  • Ricort JM, Tanti JF, Van Obberghen E, Le Marchand-Brustel Y (1996) Different effects of insulin and platelet-derived growth factor on phosphatidylinositol 3-kinase at the subcellular level in 3T3-L1 adipocytes. A possible explanation for their specific effects on glucose transport. Eur J Biochem 239:17–22

    Article  PubMed  Google Scholar 

  • Ricort JM, Tanti JF, Van Obberghen E, Le Marchand-Brustel Y (1997) Cross-talk between the platelet-derived growth factor and the insulin signaling pathways in 3T3-L1 adipocytes. J Biol Chem 272:19814–8

    Article  PubMed  Google Scholar 

  • Roach PJ (1991) Multisite and hierarchal protein phosphorylation. J Biol Chem 266:14139–42

    PubMed  Google Scholar 

  • Roach PJ, Larner J (1976) Rabbit skeletal muscle glycogen synthase. II. Enzyme phosphorylation state and effector concentrations as interacting control parameters. J Biol Chem 251:1920–5

    Google Scholar 

  • Roach PJ, Takeda Y, Larner J (1976) Rabbit skeletal muscle glycogen synthase. I. Relationship between phosphorylation state and kinetic properties. J Biol Chem 251:1913–9

    PubMed  Google Scholar 

  • Robinson KA, Boggs KP, Buse MG (1993a) Okadaic acid, insulin, and denervation effects on glucose and amino acid transport and glycogen synthesis in muscle. Am J Physiol 265:E36–43

    PubMed  Google Scholar 

  • Robinson KA, Sens DA, Buse MG (1993b) Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor. Diabetes 42:1333–46

    PubMed  Google Scholar 

  • Robinson LJ, Razzack ZF, Lawrence JC, James DE (1993c) Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthetase in 3T3-L1 adipocytes. J Biol Chem 268:26422–26427

    PubMed  Google Scholar 

  • Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E (1998) Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules. Mol Endocrinol 12:914–23

    Article  PubMed  Google Scholar 

  • Rondinone CM, Smith U (1996) Okadaic acid exerts a full insulin-like effect on glucose transport and glucose transporter 4 translocation in human adipocytes. Evidence for a phosphatidylinositol 3-kinase-independent pathway. J Biol Chem 271:18148–53

    Article  PubMed  Google Scholar 

  • Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U (1997) Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 94:4171–5

    Article  PubMed  Google Scholar 

  • Rondinone CM, Zarnowski MJ, Londos C, Smith UP (1996) The inhibitory effect of staurosporine on insulin action is prevented by okadaic acid. Evidence for an important role of serine/threonine phosphorylation in eliciting insulin-like effects. Biochim Biophys Acta 1314:49–56

    Article  PubMed  Google Scholar 

  • Ross SA, Herbst JJ, Keller SR, Lienhard GE (1997) Trafficking kinetics of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. Biochem Biophys Res Commun 239:247–51

    Article  PubMed  Google Scholar 

  • Ross SA, Keller SR, Lienhard GE (1998a) Increased intracellular sequestration of the insulin-regulated aminopeptidase upon differentiation of 3T3-L1 cells. Biochem J 330:1003–8

    PubMed  Google Scholar 

  • Ross SA, Lienhard GE, Lavan BE (1998b) Association of insulin receptor substrate 3 with SH2 domain-containing proteins in rat adipocytes. Biochem Biophys Res Commun 247:487–92

    Article  PubMed  Google Scholar 

  • Ross SA, Scott HM, Morris NJ, Leung WY, Mao F, Lienhard GE, Keller SR (1996) Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. J Biol Chem 271:3328–32

    Article  PubMed  Google Scholar 

  • Rossetti L, Hawkins M, Chen W, Gindi J, Barzilai N (1995) In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest 96:132–140

    PubMed  Google Scholar 

  • Rothenberg PL, Lane WS, Karasik A, Backer JM, White MF, Kahn CR (1991) Purification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase. J Biol Chem 266:8302–8311

    PubMed  Google Scholar 

  • Rothenberg PL, Willison LD, Simon J, Wolf BA (1995) Glucose-induced insulin receptor tyrosine phosphorylation in insulin-secreting beta-cells. Diabetes 44:802–9

    PubMed  Google Scholar 

  • Rother KI, Imai Y, Caruso M, Beguinot F, Formisano P, Accili D (1998) Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J Biol Chem 273:17491–7

    Article  PubMed  Google Scholar 

  • Roy D, Marette A (1996) Exercise induces the translocation of GLUT4 to transverse tubules from an intracellular pool in rat skeletal muscle. Biochem Biophys Res Commun 223:147–152

    Article  PubMed  Google Scholar 

  • Ruderman NB, Kapeller R, White MF, Cantley LC (1990) Activation of phosphatidy-linositol 3-kinase by insulin. Proc Natl Acad Sci USA 87:1411–1415

    PubMed  Google Scholar 

  • Rui L, Carter-Su C (1998) Platelet-derived growth factor (PDGF) stimulates the association of SH2-bbeta with PDGF receptor and phosphorylation of SH2-Bbeta. J Biol Chem 273:21239–45

    Article  PubMed  Google Scholar 

  • Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C (1997) Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17:6633–44

    PubMed  Google Scholar 

  • Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45:1661–9

    PubMed  Google Scholar 

  • Sandouk T, Reda D, Hofmann C (1993a) The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 133:352–9

    Article  PubMed  Google Scholar 

  • Sandouk T, Reda D, Hofmann C (1993b) The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 133:352–9

    Article  PubMed  Google Scholar 

  • Sawka-Verhelle D, Baron V, Mothe I, Filloux C, White MF, Van Obberghen E (1997a) Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J Biol Chem 272:16414–20

    Article  PubMed  Google Scholar 

  • Sawka-Verhelle D, Filloux C, Tartare-Deckert S, Mothe I, Van Obberghen E (1997b) Identification of Stat 5B as a substrate of the insulin receptor. Eur J Biochem 250:411–7

    Article  PubMed  Google Scholar 

  • Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E (1996) Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem 271:5980–5983

    Article  PubMed  Google Scholar 

  • Schumacher R, Mosthaf L, Schlessinger J, Brandenburg D, Ullrich A (1991) Insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors. J Biol Chem 266:19288–95

    PubMed  Google Scholar 

  • Sciacchitano S, Taylor SI (1997) Cloning, tissue expression, and chromosomal localization of the mouse IRS-3 gene. Endocrinology 138:4931–40

    Article  PubMed  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC, Jr. (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7

    Article  PubMed  Google Scholar 

  • Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, Kusari J, Olefsky JM (1996) Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45:1379–85

    PubMed  Google Scholar 

  • Sharma PM, Egawa K, Gustafson TA, Martin JL, Olefsky JM (1997) Adenovirus-mediated overexpression of IRS-1 interacting domains abolishes insulin-stimulated mitogenesis without affecting glucose transport in 3T3-L1 adipocytes. Mol Cell Biol 17:7386–97

    PubMed  Google Scholar 

  • Sharma PM, Egawa K, Huang Y, Martin JL, Huvar I, Boss GR, Olefsky JM (1998) Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J Biol Chem 273:18528–37

    Article  PubMed  Google Scholar 

  • Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268:22243–6

    PubMed  Google Scholar 

  • Shepherd PR, Nave BT, Rincon J, Haigh RJ, Foulstone E, Proud C, Zierath JR, Siddle K, Wallberg-Henriksson H (1997) Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism. Diabetologia 40:1172–7

    Article  PubMed  Google Scholar 

  • Shibata H, Omata W, Suzuki Y, Tanaka S, Kojima I (1996) A synthetic peptide corresponding to the rab4 hypervariable carboxyl-terminal domain inhibits insulin action on glucose transport in rat adipocytes. J Biol Chem 1996 271:9704–9

    Google Scholar 

  • Shier P, Watt VM (1989) Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem 264:14605–8

    PubMed  Google Scholar 

  • Shier P, Watt VM (1992) Tissue-specific expression of the rat insulin receptor-related receptor gene. Mol Endocrinol 6:723–9

    Article  PubMed  Google Scholar 

  • Shimabukuro M, Zhou YT, Lee Y, Unger RH (1998a) Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. j Biol Chem 273:3547–50

    Article  PubMed  Google Scholar 

  • Shimabukuro M, Zhou YT, Levi M, Unger RH (1998b) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 95:2498–502

    Article  PubMed  Google Scholar 

  • Shisheva A, Shechter Y (1991) Effect of okadaic acid in rat adipocytes: differential stimulation of glucose and lipid metabolism and induction of refractoriness to insulin and vanadate. Endocrinology 129:2279–88

    PubMed  Google Scholar 

  • Shoelson SE, White MF, Kahn CR (1988) Tryptic activation of the insulin receptor. Proteolytic truncation of the alpha-subunit releases the beta-subunit from inhibitory control. J Biol Chem 263:4852–60

    PubMed  Google Scholar 

  • Siegel TW, Ganguly S, Jacobs S, Rosen OM, Rubin CS (1981) Purification and properties of the human placental insulin receptor. J Biol Chem 256:9266–73

    PubMed  Google Scholar 

  • Simon MA, Dodson GS, Rubin GM (1993) An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73:169–177

    Article  PubMed  Google Scholar 

  • Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ, Jr., Backer JM, Ullrich A, White MF, Schlessinger J (1993) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J 12:1929–1936

    PubMed  Google Scholar 

  • Skolnik EY, Marcusohn J (1996) Inhibition of insulin receptor signaling by TNF: potential role in obesity and non-insulin-dependent diabetes mellitus. Cytokine Growth Factor Rev 7:161–73

    Article  PubMed  Google Scholar 

  • Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Dr·_epps A, Ullrich A, Schlessinger J (1991) Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90

    Article  PubMed  Google Scholar 

  • Smith LK, Bradshaw M, Croall DE, Garner CW (1993) The insulin receptor substrate (IRS-1) is a PEST protein that is susceptible to calpain degradation in vitro. Biochem Biophys Res Commun 196:767–772

    Article  PubMed  Google Scholar 

  • Smith LK, Rice KM, Garner CW (1996) The insulin-induced down-regulation of IRS-1 in 3T3-L1 adipocytes is mediated by a calcium-dependent thiol protease. Mol Cell Endocrinol 122:81–92

    Article  PubMed  Google Scholar 

  • Smith LK, Vlahos CJ, Reddy KK, Falck JR, Garner CW (1995) Wortmannin and LY294002 inhibit the insulin-induced down-regulation of IRS-1 in 3T3-L1 adipocytes. Mol Cell Endocrinol 113:73–81

    Article  PubMed  Google Scholar 

  • Smith RL, Lawrence JC, Jr. (1985) Insulin action in denervated skeletal muscle. Evidence that the reduced stimulation of glycogen synthesis does not involve decreased insulin binding. J Biol Chem 260:273–8

    PubMed  Google Scholar 

  • Smith-Hall J, Pons S, Patti ME, Burks DJ, Yenush L, Sun XJ, Kahn CR, White MF (1997) The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry 36:8304–10

    Article  PubMed  Google Scholar 

  • Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  PubMed  Google Scholar 

  • Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T, Ren R, Baltimore D, Ratnofsky S, Feldman RA, Cantley LC (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 14:2777–2785

    PubMed  Google Scholar 

  • Standaert M, Bandyopadhyay G, Galloway L, Ono Y, Mukai H, Farese R (1998) Comparative effects of GTPgammaS and insulin on the activation of Rho, phosphatidylinositol 3-kinase, and protein kinase N in rat adipocytes. Relationship to glucose transport. J Biol Chem 273:7470–7

    Article  PubMed  Google Scholar 

  • Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV (1997) Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem 272:30075–82

    Article  PubMed  Google Scholar 

  • Stein D, Wu J, Fuqua SAW, Roonprapunt C, Yajnik V, D'Eustachio P, Moskow JJ, Buchberg AM, Osborne CK, Margolis B (1994) The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J 13:1331–1340

    PubMed  Google Scholar 

  • Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, Houseknecht K, Katz EB, Charron MJ (1997) GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 3:1096–1101

    Article  PubMed  Google Scholar 

  • Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272:971–6

    Article  PubMed  Google Scholar 

  • Stokoe D, McCormick F (1997) Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. Embo J 16:2384–96

    Article  PubMed  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277:567–70

    Article  PubMed  Google Scholar 

  • Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–8

    Article  PubMed  Google Scholar 

  • Sun XJ, Crimmins DL, Myers MG, Jr., Miralpeix M, White MF (1993) Pleiotropic insulin signals are engeged by multisite phosphorylation of IRS-1. Mol Cell Biol 13:7418–7428

    PubMed  Google Scholar 

  • Sun XJ, Miralpeix M, Myers MG, Glasheen EM, Backer JM, Kahn CR, White MF (1992) Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 267:22662–22672

    PubMed  Google Scholar 

  • Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki A, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Article  PubMed  Google Scholar 

  • Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MGJ, Glasheen E, Lane WS, Pierce JH, White MF (1995) Role of IRS-2 in insulin and cytokine signaling. Nature 377:173–177

    Article  PubMed  Google Scholar 

  • Sung CK, Sanchez-Margalet V, Goldfine ID (1994) Role of p85 subunit of phosphatidylinositol-3-kinase as an adaptor molecule linking the insulin receptor, p62, and GTPase-activating protein. J Biol Chem 269:12503–7

    PubMed  Google Scholar 

  • Sutherland C, Campbell DG, Cohen P (1993) Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur J Biochem 212:581–8

    Article  PubMed  Google Scholar 

  • Tamori Y, Hashiramoto M, Araki S, Kamata Y, Takahashi M, Kozaki S, Kasuga M (1996) Cleavage of vesicle-associated membrane protein (VAMP)-2 and cellubrevin on GLUT4-containing vesicles inhibits the translocation of GLUT4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 220:740–5

    Article  PubMed  Google Scholar 

  • Tamura S, Fujita-Yamaguchi Y, Larner J (1983) Insulin-like effect of trypsin on the phosphorylation of rat adipocyte insulin receptor. J Biol Chem 258:14749–52

    PubMed  Google Scholar 

  • Tanti J-F, Gremeaux T, Van Obberghen E, Le Marchand-Brustel Y (1994) Serine/Threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057

    PubMed  Google Scholar 

  • Tanti JF, Gremeaux T, Grillo S, Calleja V, Klippel A, Williams LT, Van Obberghen E, Le Marchand-Brustel Y (1996) Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J Biol Chem 271:25227–32

    Article  PubMed  Google Scholar 

  • Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E, Le Marchand-Brustel Y (1997) Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 138:2005–10

    Article  PubMed  Google Scholar 

  • Tattersall RB, Fajans SS (1975) A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes 24:44–53

    PubMed  Google Scholar 

  • Tavare JM, O'Brien RM, Siddle K, Denton RM (1988) Analysis of insulin-receptor phosphorylation sites in intact cells by two-dimensional phosphopeptide mapping. Biochem J 253:783–8

    PubMed  Google Scholar 

  • Tavare JM, Siddle K (1993) Mutational analysis of insulin receptor function: consensus and controversy. Biochim Biophys Acta 1178:21–39

    Article  PubMed  Google Scholar 

  • Taylor SI, Accili D, Cama A, Kadowaki H, Kadowaki T, Imano E, Sierra ML (1991) Mutations in the insulin receptor gene in patients with genetic syndromes of insulin resistance. Adv Exp Med Biol 293:197–213

    PubMed  Google Scholar 

  • Thies RS, Molina JM, Ciaraldi TP, Freidenberg GR, Olefsky JM (1990) Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects. Diabetes 39:250–9

    PubMed  Google Scholar 

  • Thomson MJ, Williams MG, Frost SC (1997) Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem 272:7759–64

    Article  PubMed  Google Scholar 

  • Till M, Kolter T, Eckel J (1997) Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes. Am J Cardiol 80:85A–89A

    Article  PubMed  Google Scholar 

  • Timmers KI, Clark AE, Omatsu-Kanbe M, Whiteheart SW, Bennett MK, Holman GD, Cushman SW (1996) Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein. Biochem J 320:429–36

    PubMed  Google Scholar 

  • Todaka M, Hayashi H, Imanaka T, Mitani Y, Kamohara S, Kishi K, Tamaoka K, Kanai F, Shichiri M, Morii N, Narumiya S, Ebina Y (1996) Roles of insulin, guanosine 5′-[gamma-thio]triphosphate and phorbol 12-myristate 13-acetate in signalling pathways of GLUT4 translocation. Biochem J 315:875–882

    PubMed  Google Scholar 

  • Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–6

    Article  PubMed  Google Scholar 

  • Tonks NK, Charbonneau H (1989) Protein tyrosine dephosphorylation and signal transduction. TIBS Dec.:497–500

    Google Scholar 

  • Tonks NK, Cicirelli MF, Diltz CD, Krebs EG, Fischer EH (1990) Effect of microinjection of a low-Mr human placenta protein tyrosine phosphatase on induction of meiotic cell division in Xenopus oocytes. Mol Cell Biol 10:458–63

    PubMed  Google Scholar 

  • Tonks NK, Diltz CD, Fischer EH (1988a) Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 263:6731–7

    PubMed  Google Scholar 

  • Tonks NK, Diltz CD, Fischer EH (1988b) Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 263:6722–30

    PubMed  Google Scholar 

  • Tornqvist HE, Avruch J (1988) Relationship of site-specific beta subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity. J Biol Chem 263:4593–601

    PubMed  Google Scholar 

  • Tozzo E, Gnudi L, Kahn BB (1997) Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138:1604–11

    Article  PubMed  Google Scholar 

  • Tozzo E, Kahn BB, Pilch PF, Kandror KV (1996) Glut4 is targeted to specific vesicles in adipocytes of transgenic mice overexpressing Glut4 selectively in adipose tissue. J Biol Chem 271:10490–4

    Article  PubMed  Google Scholar 

  • Traxinger RR, Marshall S (1991) Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem 266:10148–54

    PubMed  Google Scholar 

  • Tsao TS, Burcelin R, Katz EB, Huang L, Charron MJ (1996) Enhanced insulin action due to targeted GLUT4 overexpression in muscle. Diabetes 45:28–36

    PubMed  Google Scholar 

  • Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y, Kadowaki T (1998) Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 273:5315–22

    Article  PubMed  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao Y-C, Tsubokawa M, Mason M, Seeburg PH, Granfeld C, Rosen M, Ramachandran J (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 33:756–761

    Article  Google Scholar 

  • Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512

    PubMed  Google Scholar 

  • Usui I, Takata Y, Imamura T, Morioka H, Sasaoka T, Sawa T, Ishihara H, Ishiki M, Kobayashi M (1997) Fatty acid induced insulin resistance in rat-1 fibroblasts overexpressing human insulin receptors: impaired insulin-stimulated mitogen-activated protein kinase activity. Diabetologia 40:894–901

    Article  PubMed  Google Scholar 

  • Valverde AM, Lorenzo M, Pons S, White MF, Benito M (1998) Insulin receptor substrate (IRS) proteins IRS-1 and IRS-2 differential signaling in the insulin/insulin-like growth factor-I pathways in fetal brown adipocytes. Mol Endocrinol 12:688–697

    Article  PubMed  Google Scholar 

  • van den Berghe N, Ouwens DM, Maassen JA, van Mackelenbergh MG, Sips HC, Krans HM (1994) Activation of the Ras/mitogen-activated protein kinase signaling pathway alone is not sufficient to induce glucose uptake in 3T3-L1 adipocytes. Mol Cell Biol 14:2372

    PubMed  Google Scholar 

  • van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, van de Kamp JJ, Maassen JA (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1:368–71

    Article  PubMed  Google Scholar 

  • van der Geer P, Wiley S, Gish GD, Lai VK, Stephens R, White MF, Kaplan D, Pawson T (1996) Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. Proc Natl Acad Sci USA 93:963–8

    Article  PubMed  Google Scholar 

  • Van Epps-Fung M, Williford J, Wells A, Hardy RW (1997) Fatty acid-induced insulin resistance in adipocytes. Endocrinology 138:4338–45

    Article  PubMed  Google Scholar 

  • Van Horn DJ, Myers MG, Backer JM (1994) Direct activation of the phosphatidylinositol 3′-kinase by the insulin receptor. J Biol Chem 269:29–32

    PubMed  Google Scholar 

  • Verhey KJ, Yeh JI, Birnbaum MJ (1995) Distinct signals in the GLUT4 glucose transporter for internalization and for targeting to an insulin-responsive compartment. J Cell Biol 130:1071–9

    Article  PubMed  Google Scholar 

  • Virkamaki A, Daniels MC, Hamalainen S, Utriainen T, McClain D, Yki-Jarvinen H (1997) Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin sensitive tissues. Endocrinology 138:2501–7

    Article  PubMed  Google Scholar 

  • Volchuk A, Sargeant R, Sumitani S, Liu Z, He L, Klip A (1995) Cellubrevin is a resident protein of insulin-sensitive GLUT4 glucose transporter vesicles in 3T3-L1 adipocytes. J Biol Chem 270:8233–40

    Article  PubMed  Google Scholar 

  • Volchuk A, Wang Q, Ewart HS, Liu Z, He L, Bennett MK, Klip A (1996) Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport. Mol Biol Cell 7:1075–82

    PubMed  Google Scholar 

  • Voliovitch H, Schindler DG, Hadari YR, Taylor SI, Accili D, Zick Y (1995) Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. J Biol Chem 270:18083–7

    Article  PubMed  Google Scholar 

  • Walder K, Filippis A, Clark S, Zimmet P, Collier GR (1997) Leptin inhibits insulin binding in isolated rat adipocytes. J Endocrinol 155:R5–7

    Article  PubMed  Google Scholar 

  • Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR (1998a) Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 331:299–308

    PubMed  Google Scholar 

  • Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR (1998b) Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 331:299–308

    PubMed  Google Scholar 

  • Wang J, Riedel H (1998) Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J Biol Chem 273:3136

    Article  PubMed  Google Scholar 

  • Wang Y, Kuropatwinski KK, White DW, Hawley TS, Hawley RG, Tartaglia LA, Baumann H (1997) Leptin receptor action in hepatic cells. J Biol Chem 272:16216–23

    Article  PubMed  Google Scholar 

  • Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR (1990) Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113:909–15

    PubMed  Google Scholar 

  • Waters JC, Chen RH, Murray AW, Salmon ED (1998) Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol 141:1181–91

    Article  PubMed  Google Scholar 

  • Waters SB, D'Auria M, Martin SS, Nguyen C, Kozma LM, Luskey KL (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J Biol Chem 272:23323–7

    Article  PubMed  Google Scholar 

  • Watt VM, Shier P, Chan J, Petrisor BA, Mathi SK (1993) IRR: a novel member of the insulin receptor family. Adv Exp Med Biol 343:125–132

    PubMed  Google Scholar 

  • Waugh SM, DiBella EE, Pilch PF (1989) Isolation of a proteolytically derived domain of the insulin receptor containing the major site of cross-linking/binding. Biochem 28:3448–3455

    Article  Google Scholar 

  • Wedekind F, Baer-Pontzen K, Bala-Mohan S, Choli D, Zahn H, Brandenburg D (1989) Hormone binding site of the insulin receptor: analysis using photoaffinity-mediated avidin complexing. Biol. Chem. Hoppe-Seyler 370:251–258

    PubMed  Google Scholar 

  • Welsh GI, Proud CG (1993) Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294:625–9

    PubMed  Google Scholar 

  • White MF (1996) The IRS-signalling system in insulin and cytokine action. Philos Trans R Soc Lond B Biol Sci 351:181–9

    PubMed  Google Scholar 

  • White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40 Suppl 2:S2–17

    Article  PubMed  Google Scholar 

  • White MF (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action [In Process Citation]. Mol Cell Biochem 182:3–11

    Article  PubMed  Google Scholar 

  • White MF, Livingston JN, Backer JM, Lauris V, Dull TJ, Ullrich A, Kahn CR (1988) Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 54:641–649

    Article  PubMed  Google Scholar 

  • White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186

    Article  PubMed  Google Scholar 

  • Widdowson PS, Upton R, Pickavance L, Buckingham R, Tadayyon M, Arch J, Williams G (1998) Acute hyperleptinemia does not modify insulin sensitivity in vivo in the rat [In Process Citation]. Horm Metab Res 30:259–62

    PubMed  Google Scholar 

  • Wiese RJ, Mastick CC, Lazar DF, Saltiel AR (1995) Activation of mitogen-activated protein kinase and phosphatidylinositol 3′-kinase is not sufficient for the hormonal stimulation of glucose uptake, lipogenesis, or glycogen synthesis in 3T3-L1 adipocytes. J Biol Chem 270:3442–6

    Article  PubMed  Google Scholar 

  • Wilden PA, Kahn CR, Siddle K, White MF (1992a) Insulin receptor kinase domain autophosphorylation regulates receptor enzymatic function. J Biol Chem 267:16660–8

    PubMed  Google Scholar 

  • Wilden PA, Siddle K, Haring E, Backer JM, White MF, Kahn CR (1992b) The role of insulin receptor kinase domain autophosphorylation in receptor-mediated activities. Analysis with insulin and anti-receptor antibodies. J Biol Chem 267:13719–27

    PubMed  Google Scholar 

  • Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM (1996) The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 39:665–8

    Article  PubMed  Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–4

    Article  PubMed  Google Scholar 

  • Wolf G, Trub T, Ottinger O, Groninga L, Lynch A, White MF, Miyazaki M, Lee J, Shoelson SE (1995) PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem 270:27407–27410

    Article  PubMed  Google Scholar 

  • Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Bell GI, et al. (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–8

    Article  PubMed  Google Scholar 

  • Yeh JI, Gulve EA, Rameh L, Birnbaum MJ (1995) The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin-and contraction-activated hexose transport. J Biol Chem 270:2107–11

    Article  PubMed  Google Scholar 

  • Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG, Jr., White MF (1996) The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem 271:24300–6

    Article  PubMed  Google Scholar 

  • Yenush L, White MF (1997) The IRS-signalling system during insulin and cytokine action. Bioessays 19:491–500

    Article  PubMed  Google Scholar 

  • Yip CC, Hsu H, Patel RG, Hawley DM, Maddux BA, Goldfine ID (1988) Localization of the insulin binding site to the cysteine-rich region of the insulin receptor α subunit. Biochem. Biophys Res Commun 157:321–329

    Article  PubMed  Google Scholar 

  • Yip CC, Yeung CWT, Moule ML (1978) Photoaffinity labeling of insulin receptor of rat adipocyte plasma membrane. J Biol Chem 253:1743–1745

    PubMed  Google Scholar 

  • Yki-Jarvinen H (1997) MODY genes and mutations in hepatocyte nuclear factors. Lancet 349:516–7

    Article  PubMed  Google Scholar 

  • Yki-Jarvinen H, Virkamaki A, Daniels MC, McClain D, Gottschalk WK (1998) Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism 47:449–455

    Article  PubMed  Google Scholar 

  • Yokouchi M, Suzuki R, Masuhara M, Komiya S, Inoue A, Yoshimura A (1997) Cloning and characterization of APS, an adaptor molecule containing PH and SH2 domains that is tyrosine phosphorylated upon B-cell receptor stimulation. Oncogene 15:7–15

    Article  PubMed  Google Scholar 

  • Zhang B, Roth RA (1991) Binding properties of chimeric insulin receptors containing the cysteine-rich domain of either the insulin-like growth factor I receptor or the insulin receptor related receptor. Biochemistry 30:5113–7

    Article  PubMed  Google Scholar 

  • Zhang WR, Li PM, Oswald MA, Goldstein BJ (1996) Modulation of insulin signal transduction by eutopic overexpression of the receptor-type protein-tyrosine phosphatase LAR. Mol Endocrinol 10:575–84

    Article  PubMed  Google Scholar 

  • Zhou L, Chen H, Lin CH, Cong LN, McGibbon MA, Sciacchitano S, Lesniak MA, Quon MJ, Taylor SI (1997) Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells. J Biol Chem 272:29829–33

    Article  PubMed  Google Scholar 

  • Zhou MM, Ravichandran KS, Olejniczak ET, Petros AM, Meadows RP, Sattler M, Harlan JE, Wade WS, Burakoff SJ, Fesik SW (1995a) Structure and ligand recognition of the phosphotyrosine binding of Shc. Nature 378:584–592

    Article  PubMed  Google Scholar 

  • Zhou S, Margolis B, Chaudhuri M, Shoelson SE, Cantley LC (1995b) The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J Biol Chem 270:14863–6

    Article  PubMed  Google Scholar 

  • Zierath JR, Frevert EU, Ryder JW, Berggren PO, Kahn BB (1998) Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes. Diabetes 47:1–4

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Gustafson, T.A., Moodie, S.A., Lavan, B.E. (1999). The insulin receptor and metabolic signaling. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 137. Reviews of Physiology, Biochemistry and Pharmacology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-65362-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-65362-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65362-2

  • Online ISBN: 978-3-540-49383-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics