Skip to main content

Adaptive curvature-based topography for learning symbolic descriptions of terrain maps

  • Learning and Machine Vision
  • Conference paper
  • First Online:
Advanced Topics in Artificial Intelligence (AI 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1342))

Included in the following conference series:

Abstract

We present an adaptive curvature scale space technique for extracting symbolic topographical descriptions from image data such as that of three dimensional digital terrain maps where specific image interpretation constraints play a significant role in defining the scale of analysis. In our approach we use machine learning techniques to learn efficient segmentation of image data, the Topograph, which satisfies the constraints of the application task and guarantees the quality of the solutions returned. The Topograph representation is evaluated empirically using a flight trajectory planning application where the problem involves minimising the integral under the path (sum of altitude) while satisfying the constraints of flight. It is shown how the Topograph hierarchy can be used to guarantee lower bounds on solutions for search problems of this nature by incorporating multiple resolution states and using dynamic programming techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besl, P., Jain, R.: Segmentation through variable-order surface fitting. IEEE Trans. Pattern Anal. Machine Intell. 10 (1988) 167–192

    Article  Google Scholar 

  2. Bischof, W. F., Caelli, T.: Learning structural descriptions of patterns: A new technique for conditional clustering and rule generation. Pattern Recognition. 27(5) (1994) 689–97

    Article  Google Scholar 

  3. Caelli, T., Dreier, A.: Variations on the evidence-based object recognition theme. Pattern Recognition. 27 (1994) 185–204

    Article  Google Scholar 

  4. Fan, T., Medioni, G., Nevatia, R.: Segmented descriptions of 3-D surfaces. IEEE Journal of Robotics and Automation. RA-3 (1987) 527–538

    Google Scholar 

  5. Fan, T., Medioni, G., Nevatia, R.: Recognizing 3-D objects using surface descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(11) (1989).

    Google Scholar 

  6. Gauch, J. M., Pizer, S. M.: Multiresolution analysis of ridges and valleys in greyscale images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 15(6) (1993) 635–646

    Article  Google Scholar 

  7. Jain, A. K., Dubes, R. C.: Algorithms for Clustering Data. Prentice Hall. (1988)

    Google Scholar 

  8. Nilsson, N. J.: Problem-Solving methods in artificial intelligence. McGraw-Hill Book Company. (1971)

    Google Scholar 

  9. Pearce, A., Caelli, T. Bischof, W. F.: Claret: A new relational learning algorithm for interpretation in spatial domains. In Proceedings of the Fourth International Conference on Control, Automation, Robotics and Vision (ICARV'96), Singapore. (1996) 650–654

    Google Scholar 

  10. Quinlan, J. R.: C4.5 Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  11. Shapiro, L. G. Haralick, R. M.: Structural descriptions and inexact matching. IEEE Transactions on Pattern Analysis and Machine Intelligence. 3(5) (1981) 504–519

    Google Scholar 

  12. Suzuki, T. Mori, S.: A thinning method based on cell structure. In Proc. Int. Workshop Frontiers Handwriting Recognition, Montreal, Canada. (1990) 39–52

    Google Scholar 

  13. Wong, A. K. C., Lu, S. W., Rioux, M.: Recognition and shape synthesis of 3-D objects based on attribute hypergraphs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11 3 (1989) 279–290

    Article  Google Scholar 

  14. Zelinsky, A.: A mobile robot exploration algorithm. IEEE Trans. on Robotics and Automation. 8(6) (1992) 707–717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Abdul Sattar

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pearce, A.R., Caelli, T., Goss, S. (1997). Adaptive curvature-based topography for learning symbolic descriptions of terrain maps. In: Sattar, A. (eds) Advanced Topics in Artificial Intelligence. AI 1997. Lecture Notes in Computer Science, vol 1342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63797-4_81

Download citation

  • DOI: https://doi.org/10.1007/3-540-63797-4_81

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63797-4

  • Online ISBN: 978-3-540-69649-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics