Skip to main content

A foundation for computable analysis

  • Invited Papers
  • Conference paper
  • First Online:
Book cover SOFSEM'97: Theory and Practice of Informatics (SOFSEM 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1338))

Abstract

While for countable sets there is a single well established computability theory (ordinary recursion theory), Computable Analysis is still underdeveloped. Several mutually non-equivalent theories have been proposed for it, none of which, however, has been accepted by the majority of mathematicians or computer scientists. In this contribution one of these theories, TTE (Type 2 Theorie of Effectivity), is presented, which at least in the author's opinion has important advantages over the others. TTE intends to characterize and study exactly those functions, operators etc. known from Analysis, which can be realized correctly by digital computers. The paper gives a short introduction to basic concepts of TTE and shows its general applicability by some selected examples. First, Turing computability is generalized from finite to infinite sequences of symbols. Assuming that digital computers can handle (w.l.o.g.) only sequences of symbols, infinite sequences of symbols are used as names for “infinite objects” such as real numbers, open sets, compact sets or continuous functions. Naming systems are called representations. Since only very few representations are of interest in applications, a very fundamental principle for defining effective representations for To-spaces with countable bases is introduced. The concepts are applied to real numbers, compact sets, continuous functions and measures. The problem of zero-finding is considered. Computational complexity is discussed. We conclude with some remarks on other models for Computable Analysis. The paper is a shortened and revised version of [Wei97].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliver Aberth. Computable Analysis. McGraw-Hill, New York, 1980.

    Google Scholar 

  2. Oliver Aberth. Precise Numerical Analysis. Brown Publishers, Dubuque, 1988.

    Google Scholar 

  3. Helmut Alt. Multiplication is the easiest nontrivial arithmetic function. Theoretical Computer Science, 36:333–339, 1985.

    Google Scholar 

  4. Errett Bishop and Douglas S. Bridges. Constructive Analysis, volume 279 of Grundlehren der mathematischen Wissenschaft. Springer, Berlin, 1985.

    Google Scholar 

  5. Vasco Brattka and Peter Hertling. Feasible real random access machines. In Keith G. Jeffrey, Jaroslav Král, and Miroslav Bartošek, editors, SOFSEM'96: Theory and Practice of Informatics, volume 1175 of Lecture Notes in Computer Science, pages 335–342, Berlin, 1996. Springer. 23rd Seminar on Current Trends in Theory and Practice of Informatics, Milovy, Czech Republik, November 23–30, 1996.

    Google Scholar 

  6. Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

    Google Scholar 

  7. Jens Blanck. Domain represent ability of metric spaces. In Ker-I Ko and Klaus Weihrauch, editors, Computability and Complexity in Analysis, volume 190 of Informatik-Berichte, pages 1–10. FernUniversität Hagen, September 1995. CCA Workshop, Hagen, August 19–20, 1995.

    Google Scholar 

  8. Markus Bläser. Uniform computational complexity of the derivatives of C-functions. In Ker-I Ko and Klaus Weihrauch, editors, Computability and Complexity in Analysis, volume 190 of Informatik-Berichte, pages 99–104. Fern Universität Hagen, September 1995. CCA Workshop, Hagen, August 19–20, 1995.

    Google Scholar 

  9. A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems. Elsevier, New York, 1975.

    Google Scholar 

  10. R.P. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the Association for Computing Machinery, 23(2):242–251, 1976.

    Google Scholar 

  11. Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21(1):1–46, July 1989.

    Google Scholar 

  12. G.S. Ceitin. Algorithmic operators in constructive complete separable metric spaces. Doklady Akad. Nauk, 128:49–52, 1959. (in Russian).

    Google Scholar 

  13. Pietro Di Gianantonio. Real number computation and domain theory. Information and Computation, 127:11–25, 1996.

    Google Scholar 

  14. Abbas Edalat. Domain theory and integration. Theoretical Computer Science, 151:163–193, 1995.

    Google Scholar 

  15. Ryszard Engelking. General Topology, volume 6 of Sigma series in pure mathematics. Heldermann, Berlin, 1989.

    Google Scholar 

  16. Andrzej Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202, 1955.

    Google Scholar 

  17. Andrzej Grzegorczyk. On the definitions of computable real continuous functions. Fundamenta Mathematicae, 44:61–71, 1957.

    Google Scholar 

  18. Jürgen Hauck. Konstruktive reelle Funktionale und Operatoren. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 29:213–218, 1983.

    Google Scholar 

  19. Peter Hertling. Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Informatik Berichte 208, Fern Universität Hagen, Hagen, November 1996. Dissertation.

    Google Scholar 

  20. Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston, 1991.

    Google Scholar 

  21. Boris Abramovich Kushner. Lectures on Constructive Mathematical Analysis, volume 60 of Translation of Mathematical Monographs. American Mathematical Society, Providence, 1984.

    Google Scholar 

  22. Christoph Kreitz and Klaus Weihrauch. A unified approach to constructive and recursive analysis. In M.M. Richter, E. Börger, W. Oberschelp, B. Schinzel, and W. Thomas, editors, Computation and Proof Theory, volume 1104 of Lecture Notes in Mathematics, pages 259–278, Berlin, 1984. Springer. Proceedings of the Logic Colloquium, Aachen, July 18–23, 1983, Part II.

    Google Scholar 

  23. Cristoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical Computer Science, 38:35–53, 1985.

    Google Scholar 

  24. Christoph Kreitz and Klaus Weihrauch. Compactness in constructive analysis revisited. Annals of Pure and Applied Logic, 36:29–38, 1987.

    Google Scholar 

  25. Ramon E. Moore. Methods and applications of interval analysis. SIAM Journal on Computing, 1979.

    Google Scholar 

  26. Norbert Th. Müller. Uniform computational complexity of Taylor series. In Thomas Ottmann, editor, Proceedings of the 14th International Colloquium on Automata, Languages, and Programming, volume 267 of Lecture Notes in Computer Science, pages 435–444, Berlin, 1987. Springer.

    Google Scholar 

  27. Erich Novak. The real number model in numerical analysis. Journal of Complexity, 11(1):57–73, 1995.

    Google Scholar 

  28. Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin, 1988.

    Google Scholar 

  29. Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Texts and Monographs in Computer Science. Springer, New York, 1985.

    Google Scholar 

  30. Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

    Google Scholar 

  31. A. Schönhage. Numerik analytischer Funktionen und Komplexität. Jahresbericht der Deutschen Mathematiker-Vereinigung, 92:1–20, 1990.

    Google Scholar 

  32. Matthias Schröder. Fast online multiplication of real numbers. In Rüdiger Reischuk and Michel Morvan, editors, STACS 97, volume 1200 of Lecture Notes in Computer Science, pages 81–92, Berlin, 1997. Springer. 14th An nual Symposium on Theoretical Aspects of Computer Science, Lübeck, Germany, February 27–March 1, 1997.

    Google Scholar 

  33. A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, Volume 1, volume 121 of Studies in Logic and the Foundations of Mathematics. NorthHolland, Amsterdam, 1988.

    Google Scholar 

  34. A.S. Troelstra. Comparing the theory of representations and constructive mathematics. In E. Börger, G. Jäger, H. Kleine Büning, and M.M. Richter, editors, Computer Science Logic, volume 626 of Lecture Notes in Computer Science, pages 382–395, Berlin, 1992. Springer. Proceedings of the 5th Workshop, CSL'91, Berne Switzerland, October 1991.

    Google Scholar 

  35. Alan M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

    Google Scholar 

  36. Alan M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. A correction. Proceedings of the London Mathematical Society, 43(2):544–546, 1937.

    Google Scholar 

  37. Joseph F. Traub, G.W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity. Computer Science and Scientific Computing. Academic Press, New York, 1988.

    Google Scholar 

  38. Klaus Weihrauch. Type 2 recursion theory. Theoretical Computer Science, 38:17–33, 1985.

    Google Scholar 

  39. Klaus Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1987.

    Google Scholar 

  40. Klaus Weihrauch. Effektive Analysis. Correspondence course 1681, Fern Universität Hagen, 1994.

    Google Scholar 

  41. Klaus Weihrauch. A simple introduction to computable analysis. Informatik Berichte 171, Fern-Universität Hagen, Hagen, July 1995. 2nd edition.

    Google Scholar 

  42. Klaus Weihrauch. Computability on the probability measures on the Borel sets of the unit interval. In Ker-I Ko, Norbert Müller, and Klaus Weihrauch, editors, Computability and Complexity in Analysis, pages 99–112. Universität Trier, 1996. Second CCA Workshop, Trier, August 22–23, 1996.

    Google Scholar 

  43. Klaus Weihrauch. A foundation for computable analysis. In Douglas S. Bridges, Cristian S. Calude, Jeremy Gibbons, Steve Reeves, and Ian H. Witten, editors, Combinatorics, Complexity, and Logic, Discrete Mathematics and Theoretical Computer Science, pages 66–89, Singapore, 1997. Springer. Proceedings of DMTCS'96.

    Google Scholar 

  44. E. Wiedmer. Computing with infinite objects. Theoretical Computer Science, 10:133–155, 1980.

    Google Scholar 

  45. Klaus Weihrauch and Ulrich Schreiber. Embedding metric spaces into cpo's. Theoretical Computer Science, 16:5–24, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

František Plášil Keith G. Jeffery

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weihrauch, K. (1997). A foundation for computable analysis. In: Plášil, F., Jeffery, K.G. (eds) SOFSEM'97: Theory and Practice of Informatics. SOFSEM 1997. Lecture Notes in Computer Science, vol 1338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63774-5_100

Download citation

  • DOI: https://doi.org/10.1007/3-540-63774-5_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63774-5

  • Online ISBN: 978-3-540-69645-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics