Temporal features of class populations and attributes in conceptual models

  • Dolors Costal
  • Antoni Olivé
  • Maria-Ribera Sancho
Session 2b: Temporal Modeling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1331)


Constraints play an important role in conceptual modeling. In general, the specification of constraints, both static and transition, must be done in some logic-based language. Unfortunately, the resulting formulas may be complex, error-prone and difficult to read. This explain why almost all conceptual modeling languages have developed a special, easy-to-use syntax (language features) to state the most common constraints. Most features (often with graphical symbols) developed so far are concerned with static constraints (like keys, partitions or cardinalities), and very little work has been done for transition constraints.

In this paper, we identify six temporal features, three related to class populations and three to attributes. The corresponding transition integrity constraints appear in almost any conceptual model and their specification is necessary and important. We believe that our temporal features make their specification simple and practical. We have named each feature, and provide a declarative and procedural formalization for them.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BMR95]
    Borgida,A.;Mylopoulos,J.;Reiter,R. “On the Frame Problem in Procedure Specifications”,IEEE Trans. on SE,Oct., pp. 785–798.Google Scholar
  2. [Bor85]
    Borgida,A. “Features of Languages for the Development of Information Systems at the Conceptual Level”, IEEE Software, Jan., pp. 63–72.Google Scholar
  3. [CoD94]
    Cook,S.; Daniels, J. “Designing Object Systems. Object-Oriented Modeling with Syntropy”, Prentice Hall.Google Scholar
  4. [COS97]
    Costal,D.; Olivé,A.;Sancho,M-R. “Temporal Features of Class Populations and Attributes in Conceptual Models-extended version” Report LSI-97-32-RGoogle Scholar
  5. [dCF92]
    de Champeaux,D.; Faure,P. “A comparative study of object-oriented analysis methods”, JOOP, March/April, pp.21–33.Google Scholar
  6. [DHR91]
    Dubois,E., Hagelstein,J.; Rifaut,A. “A formal language for the requirements engineering of computer systems”, in “From Natural Language Processing to Logic for Expert Systems”, Wiley, pp. 269–345.Google Scholar
  7. [EKW92]
    Embley,D.W.; Kurtz,B.D.; Woodfield,S.N. “Object-Oriented Systems Analysis. A Model-Driven Approach”, Prentice-Hall, Inc.Google Scholar
  8. [GKB82]
    Gustaffson,M.R.; Karlsson,T.; Bubenko jr.J.A. “A Declarative Approach to Conceptual Information Modelling”, in Information Systems Design Methodologies: A comparative Review”, North-Holland, pp. 93–142.Google Scholar
  9. [GSR96]
    Gottlob,G.; Schrefl,M.; Röck,B. “Extending Object-Oriented Systems with Roles”, ACTM TOIS, Vol.14,No.3, pp. 268–296Google Scholar
  10. [HaM81]
    Hammer,M.; McLeod,D. “Database Description with SDM: A Semantic Database Model”, ACM TODS, Vol.6,No.3, September, pp. 351–386.Google Scholar
  11. [ISO82]
    ISO/TC97/SC5/WG3. “Concepts and Terminology for the Conceptual Schema and the Information Base”, ed. J.J. van Griethuysen.Google Scholar
  12. [JSH+96]
    Jungclaus,R.; Saake,G.; Hartmann,T.; Sernadas,C. “TROLL-A Language for Object-Oriented Specification of Information Systems”, ACM TOIS,Vol.14,No.2, April, pp. 175–211.Google Scholar
  13. [KBG89]
    Kim,W.; Bertino,E.; Garza,J.F. “Composite Objects Revisited”, Proc. OOPSLA 89, pp. 337–347.Google Scholar
  14. [Kun84]
    Kung,C. “A Temporal Framework for Information Systems Specification and Verification”, Ph.D Thesis, The University of Trondheim, NorwayGoogle Scholar
  15. [LEW93]
    Liddle,S.W.; Embley,D.E.; Woodfield,S.N. “Cardinality constraints in semantic data models”, Data&Knowledge Engineering 11 (1993), pp. 235–270.Google Scholar
  16. [MaO95]
    Martin,J.; Odell,J. ”Object-Oriented Methods. A Foundation”, Prentice Hall.Google Scholar
  17. [Mots93]
    Motschnig-Pitrik,R. ”The Semantics of Parts Versus Aggregates in Data/Knowlege Modelling”, Proc. of the CAiSE'93, LNCS 685, SpringerGoogle Scholar
  18. [Per90]
    Pernici,B. ”Objects with Roles”, Proc. ACM Conf. on Office Information Systems, ACM,New York, 205–215.Google Scholar
  19. [Rat97]
    Rational Software Corporation, “Unified Modeling Language (UML)”, Version 1.0, January.Google Scholar
  20. [RBP+91]
    Rumbaugh,J.; Blaha,M.; Premerlani,W.; Eddy,F.; Lorensen,W. “Object-Oriented Modeling and Design”, Prentice Hall.Google Scholar
  21. [SFN+84]
    Schiel,U., Furtado,A.L., Neuhold,E.J.; Casanova,M.A. “Towards Multi-level and Modular Conceptual Schema Specifications”, Information Systems, Vol.9, No.1, pp. 43–57.Google Scholar
  22. [Sto93]
    Storey, V.C. “Understanding Semantic Relationships”, The VLDB Journal, Vol.2,No.4,Oct., pp. 455–488.Google Scholar
  23. [VeF85]
    Veloso,P.A.S.; Furtado,A.L. “Towards simpler and yet complete formal specifications”, In “Information Systems: Theoretical and Formal Aspects”, North-Holland, pp. 175–190.Google Scholar
  24. [VeV82]
    Verheijen,G.M.A.; Van Bekkum, J. “NIAM: An Information Analysis Method”, in “Information Systems design Methodologies: A Comparative Review”, North-Holland, pp.537–589.Google Scholar
  25. [WCH87]
    Winston,M.E.; Chaffin,R.; Herrmann,D. “A taxonomy of part-whole relations”, Cognitive Science, 11, pp.417–444.Google Scholar
  26. [WMW89]
    Wieringa,R.; Meyer,J-J.; Weigand,H. “Specifying dynamic and deontic integrity constraints”, Data & Knowledge Engineering, 4, pp.157–189.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Dolors Costal
    • 1
  • Antoni Olivé
    • 1
  • Maria-Ribera Sancho
    • 1
  1. 1.Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona (Catalonia)

Personalised recommendations