Skip to main content

A uniform framework for feature-based indexing and retrieval in visual information systems

  • Feature Extraction and Indexing
  • Chapter
  • First Online:
Visual Information Systems

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1306))

  • 101 Accesses

Abstract

Feature-based indexing is one method that can be used to provide the needed access to first-hand, unbiased primary subject matter in visual information systems. The diversity and dynamism of user information needs and the inherent characteristics of visual information however make the process of indexing quite challenging and thus some unique approaches are required. From an analysis of the special nature of visual information, and of user information needs, the paper identifies the requirements for providing acceptable levels of performance in visual information retrieval. To meet the identified requirements, the paper proposes a uniform indexing framework, which is hierarchical, general and extensible, supporting both multiple indices and multilevel indices, while providing the needed constructs for similarity and relevance grouping. Candidate features that meet the requirements of robustness and uniform indexing at the various levels of the index hierarchy as may be needed in the uniform framework are also indicated. 1 In this work, we use visual databases and visual information systems synonymously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. A. Adjeroh, and M. C Lee, “Robust and efficient transform domain video sequence analysis: an approach from the generalized colour ratio model”, accepted, Journal of Visual Communication and Image Representation.

    Google Scholar 

  2. D.A. Adjeroh and M.C. Lee, “Probabilistic similarity evaluation using fast incremental matching with optimal premature termination”, Submitted.

    Google Scholar 

  3. G. Ahanger and T.D.C. Little, “A survey of technologies of parsing and indexing digital video”, Journal of Visual Communication and Image Representation 7, 1, 26–42, 1996.

    Google Scholar 

  4. N.J. Belkin, R.N. Oddy, and H.M. Brooks, “ASK for information retrieval”, Part I & II, Journal of Documentation, 38, 51–71, 145–164, 1982.

    Google Scholar 

  5. E. Bertino and P. Foscoli, “Index organizations for object-oriented database systems”, IEEE Transactions on Knowledge and Data Engineering, 7, 2, 193–209, 1995.

    Google Scholar 

  6. S-K Chang, Q-Y Shi and C-W Yan, “Iconic indexing by 2D strings”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, 3, 413–428, 1987.

    Google Scholar 

  7. S-K Chang, “Toward a theory of active index”, Journal of Visual Languages and Computing, 5, 101–118, 1995.

    Google Scholar 

  8. S-S Chen, “Content-based indexing of spatial objects in digital libraries”, Journal of Visual Communication and Image Representation 7, 1, 16–27, 1996.

    Google Scholar 

  9. P. Ciaccia, F. Rabitti, and P. Zezula, “Similarity search in multimedia database systems”, Proc., 1st International Conference on Visual Information Systems, Melbourne Australia, 107–115, 1996.

    Google Scholar 

  10. K. Dittrich, “Object-oriented data model concepts”, in A Dogac, M.T Ozsu, T. Sellis (eds.), “Advances in Object-Oriented Database Systems”, NATO ASI series, 29–45, 1994.

    Google Scholar 

  11. P.G.B. Enser, “Pictorial information retrieval”, Journal of Documentation, 51, 2, 126–170. 1995.

    Google Scholar 

  12. R.A. Fairthorne, “Automatic retrieval of recorded information”, Computer Journal, 1, 1, 36–41, 1958.

    Google Scholar 

  13. M. Flickner et al, “Query by image and video content: the QBIC system”, IEEE Computer, 23–31, Sept. 1995.

    Google Scholar 

  14. D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell, “Invariant Descriptors for 3-D Object Recognition and Pose,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 10, 971–991, 1991.

    Google Scholar 

  15. B.V. Funt and G.D. Finlayson, “Color constant color indexing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, no. 5, 522–529, 1995.

    Google Scholar 

  16. W.I. Grosky and Z. Jiang, “Hierarchical approach to feature indexing,” Image Vision and Computing, 12, 5, 275–283, 1994.

    Google Scholar 

  17. M. D. Gross, “IIndexing visual databases of designs with diagrams”, in A. Koutamanis, H. Timmermans, and I. Vermeuten, (eds.), Visual Databases in Architecture, Avebury, Aldershot, 1–14, 1995.

    Google Scholar 

  18. V. T. Gudivada and V. V. Raghavan, “Design and evaluation of algorithms for image retrieval by spatial similarity”, ACM Transactions on Information Systems, 13, 2, 115–144, 1995.

    Google Scholar 

  19. V.T. Gudivada, V.V. Raghavan, and K. Vanapipat, “A unified approach to data modeling and retrieval for a class of image database applications”, in V. S. Subrahmanian and S. Jagodia (eds.) Multimedia Database Systems: Issues and Research Directions, Springer-Verlag, Berlin, 37–78, 1996.

    Google Scholar 

  20. S. Hibino and E.A. Rundensteiner, “A visual query language for identifying temporal trends in video data”, Proc., International Workshop on Multi-Media Database Management Systems, New York, USA, 74–81, 1995.

    Google Scholar 

  21. E. Hwang and V.S. Subrahmanian, “Querying video libraries”, Journal of Visual Communication and Image Representation, 7, 1, 44–60, 1996.

    Google Scholar 

  22. W. Klas, E.J. Neuhold, and M. Schrefl, “Visual databases need data models for multimedia data”, in T. L. Kunii (ed); Visual Database Systems, Elsevier Science Publishers B.V. (North-Holland), 433–462, 1989.

    Google Scholar 

  23. Klinger A and Pizano A, “Visual structure and data bases”, in, T.L. Kunii (ed.), Visual Database Systems, Elsevier Science Publishers B.V. (North-Holland), 3–25, 1989.

    Google Scholar 

  24. F.W. Lancaster, Indexing and Abstracting in Theory and Practice, University of Illinois, USA, 1991.

    Google Scholar 

  25. M. C. Lee and D. A Adjeroh, “Indexing and retrieval in visual databases via colour ratio histograms”, Proc., 1st International Conference on Visual Information Systems; Melbourne Australia, 309–316, 1996.

    Google Scholar 

  26. C. H. C. Leung and Z. J. Zheng, “Image data modelling for efficient content indexing”; Proc., International Workshop on Multi-Media Database Management Systems, New York, USA, 143–150, 1995.

    Google Scholar 

  27. D. Lucarefla and Z. Antonella, “A visual retrieval environment for hypermedia information systems”, ACM Transactions on Information Systems, 14, 1, 3–29, 1996.

    Google Scholar 

  28. M.H. O'Docherty and C.N. Daskalakis, “Multimedia information systems — the management and semantic retrieval of all electronic data types”, The Computer Journal, 34, 3, 225–238. 1991.

    Google Scholar 

  29. B. J. Oommen and C. Forthergill, “Fast learning automaton-based image examination and retrieval”, The Computer Journal, 36, 6, 542–553, 1993.

    Google Scholar 

  30. E. Oomoto and K. Tanaka, “OVID: design and implementation of a video-object database system”, IEEE Transactions on Knowledge and Data Engineering, 5, 4, 629–643, 1995.

    Google Scholar 

  31. G. Salton, Automatic Text Processing: The Transformation; Analysis and Retrieval of Information by Computer, Addison-Wesley Publishing Co., 1989.

    Google Scholar 

  32. H. Samet, “The quadtree and related hierarchical data structures”, ACM Computing Surveys, 16, 2, 187–260, 1984.

    Google Scholar 

  33. S. L. Shatford, “Some issues in the indexing of images”, Journal of American Society of Information Science, 45, 8, 583–588, 1994.

    Google Scholar 

  34. B. Simonnot and M. Small, “Model for interactive retrieval of video and still images”, Proc., International Workshop on Multi-Media Database Management Systems, New York, USA, 128–135, 1995.

    Google Scholar 

  35. D. Soergel, “Indexing and retrieval performance: the logical evidence”, Journal of American Society of Information Science, 45, 8, 589–599, 1994.

    Google Scholar 

  36. M.J. Swain and D. Ballard, “dColour indexing,” International Journal of Computer Vision, 7, 1, 11–32, 1991.

    Google Scholar 

  37. M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, 3, 1, 71–86, 1991.

    Google Scholar 

  38. T.D. Wilson, “On user studies and information needs”, The Journal of Documentation, 37, 1, 3–15, 1981.

    Google Scholar 

  39. J.K Wu, A. N. Desai, B.M Mehtre, C.P. Lam, and J.Y. Gao, “CORE: A contentbased retrieval engine for multimedia information systems”, Multimedia Systems, 3, 23–41, 1995.

    Google Scholar 

  40. Z. J. Zheng and C.H.C. Leung, “Automatic image indexing for rapid content-based retrieval”, Proc., International Workshop on Multi-media Database Management Systems, New York, 38–45, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Clement Leung

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, M., Adjeroh, D.A. (1997). A uniform framework for feature-based indexing and retrieval in visual information systems. In: Leung, C. (eds) Visual Information Systems. Lecture Notes in Computer Science, vol 1306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63636-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-63636-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63636-6

  • Online ISBN: 978-3-540-69621-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics