Skip to main content

Linear constraints: Geometric objects represented by inequalitiesl

  • Representations of Spatial Concepts
  • Conference paper
  • First Online:
Spatial Information Theory A Theoretical Basis for GIS (COSIT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1329))

Included in the following conference series:

Abstract

Linear Constraints may constitute a good alternative to the widely used vector model for the representation of geometric objects. Linear Constraints are sets of inequalities of convex polygons and are simpler but more powerful than the relational model. Queries on thematic data and spatial data are expressed by operations on inequalities. This paper presents the basics of linear constraint databases. It explores whether Linear Constraints are practically viable for the use in GIS. The evaluation is based on:

  • how much storage is used,

  • how data collections are processed, and

  • if the most important operations of GIS can be implemented efficiently.

We conclude that the Linear Constraints are a promising representation of spatial data.

This work is part of the cooperation within the Esprit CONTESSA Working Group.

Work supported by INRIA, FNRS and ULB.

Work supported in part by NSF STC grant SBR-8920230 and INRIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afrati, F., Andronikos, T., & Kavalieros, T. 1997. “On the Expressiveness of Query Languages with Linear Constraints; Capturing Desirable Spatial Properties”. In Constraint Databases and Applications, Second International Workshop on Constraint Database Systems, CDB'97. (Gaede, V., et al., eds.), Lecture Notes in Computer Science, Vol. 1191, Heidelberg, Springer Verlag, pp: 105–115.

    Google Scholar 

  • Buyong, T., Kuhn, W., & Frank, A.U. 1991. “A Conceptual Model of Measurement-Based Multipurpose Cadastral Systems”. In Journal of the Urban and Regional Information Systems Association (URISA), 3, pp: 35–49.

    Google Scholar 

  • Chrisman, N. 1987. “Fundamental principles of geographic information systems”. In Proceedings of Auto-Carto 8, (Chrisman, N.R., ed.), in Baltimore, MA, Published by ASPRS & AGSM, Eighth International Symposium on Computer-Assisted Cartography, pp: 32–41.

    Google Scholar 

  • Chrisman, N.R. 1991. “The error component in spatial data”. In Geographical Information Systems: principles and applications. (Maguire, D.J., Goodchild, M.F., & Rhind, D.W., eds.), Vol. 1, Essex, Longman Scientific & Technical, pp: 165–174.

    Google Scholar 

  • Codd, E.F. 1970. “A Relational Model of Data for Large Shared Data Banks”. In CACM, 13 (6), pp: 377–387.

    Google Scholar 

  • Dincbas, M., et al. 1988. “The Constraint Logic Programming Language (CHIP)”. In Proceedings of Proc. Fifth Generation Computer Systems, in Tokyo.

    Google Scholar 

  • Ester, M., Kriegel, H.-P., & Xu, X. 1995. “Knowledge Discovery in Large Spatial Databases: Focusing Techniques for Efficient Class Identification”. In Proceedings of Fourth International Symposium on Large Spatial Databases — SSD95, (Egenhofer, M.J., & Herring, J., eds.), in Portland, ME, Published by Springer Verlag, Heidelberg, Lecture Notes in Computer Science, Vol. 951, pp: 67–82.

    Google Scholar 

  • Finke, U., & Hinrichs, K.H. 1995. “The Quad View Data Structure — A Representation for Planar Subdivisions”. In Proceedings of Fourth International Symposium on Large Spatial Databases — SSD95, (Egenhofer, M.J., & Herring, J., eds.), in Portland, ME, Published by Springer Verlag, Heidelberg, Lecture Notes in Computer Science, Vol. 951, pp: 29–46.

    Google Scholar 

  • Frank, A. 1992. “Qualitative Spatial Reasoning about Distances and Directions in Geographic Space”. In Journal of Visual Languages and Computing, 1992 (3), pp: 343–371.

    Google Scholar 

  • Frank, A.U. 1987. “Overlay Processing in Spatial Information Systems”. In Proceedings of Eighth International Symposium on Computer-Assisted Cartography (AUTO-CARTO 8), (Chrisman, N.R., ed.), in Baltimore, MD, pp: 16–31.

    Google Scholar 

  • Frank, A.U., & Kuhn, W. 1995. “Specifying Open GIS with Functional Languages“. In Advances in Spatial Databases — 4th Internat. Symposium on Large Spatial Databases, SSD95 (Portland, ME). (Egenhofer, M., & Herring, J., eds.), Lecture Notes in Computer Science, New York, Springer-Verlag, pp: 184–195.

    Google Scholar 

  • Frank, A.U., & Wallace, M. 1995. “Constraint Based Modeling in A GIS: Road Design as a Case Study”. In Proceedings of Auto-Carto 12, in Charlotte, North Carolina (Feb. 27–March 1), pp: 177–186.

    Google Scholar 

  • Gaede, V., & Wallace, M. 1997. “An Informal Introduction to Constraint Database Systems”. In Constraint Databases and Applications, Second International Workshop on Constraint Database Systems, CDB'97. (Gaede, V., et al., eds.), Lecture Notes in Computer Science, Vol. 1191, Heidelberg, Springer Verlag, pp: 7–52.

    Google Scholar 

  • Goodchild, M.F. 1990. “Tilling a Large Geographical Database”. In Proceedings of Symposium on the Design and Implementation of Large Spatial Databases, (Buchmann, A., et al., eds.), in New York, NY, Published by Springer Verlag.

    Google Scholar 

  • Grumbach, S., & Lacroix, Z. 1995. “Computing Queries on Linear Constraint Databases”. In Proceedings of Fifth Int. Workshop on Database Programming Languages — DBPL'95.

    Google Scholar 

  • Guevara, J.A. 1985. “Intersection Problems in Polygon Overlay”. In Proceedings of AutoCarto 7, in Washington, D.C., March 11–14,1985, Published by ACSM/ASPRS.

    Google Scholar 

  • Günther, O., & Wong, E. 1989. “Convex Polyhedral Chains: A Representation for Geometric Data.”. In Computer-aided Design, Butterworth & Co., 21 (3), pp: 157–164.

    Google Scholar 

  • Güting, R.H., de Ridder, T., & Schneider, M. 1995. “Implementation of the ROSE Algebra: Efficient Algorithms for Realm-Based Spatial Data Types”. In Proceedings of Fourth International Symposium on Large Spatial Databases — SSD95, (Egenhofer, M.J., & Herring, J., eds.), in Portland, ME, Published by Springer Verlag, Heidelberg, Lecture Notes in Computer Science, Vol. 951, pp: 216–239.

    Google Scholar 

  • Hjaltason, G.R., & Samet, H. 1995. “Ranking in Spatial Databases”. In Proceedings of Fourth International Symposium on Large Spatial Databases — SSD95, (Egenhofer, M.J., & Herring, J., eds.), in Portland, ME, Published by Springer Verlag, Heidelberg, Lecture Notes in Computer Science, Vol. 951, pp: 83–95.

    Google Scholar 

  • Jaffar, J., & Lassez, J.L. 1987. “Constraint Logic Programming”. In Proceedings of Proc. 14th ACMPOPL, pp: 111–119.

    Google Scholar 

  • Kanellakis, P.C., & Goldin, D.Q. 1994. “Constraint Programming and Database Query Languages”. In Proceedings of 2nd Conference on Theoretical Aspects of Computer Science (TACS).

    Google Scholar 

  • Kanellakis, P.C., Kuper, G.M., & Revesz, P.Z. 1990. “Constraint Query Languages”. In Proceedings of 9th ACMSymposium on Principles of Database Systems, in Nashville, Vol. 299–313.

    Google Scholar 

  • Kuijpers, B., & Smits, M. 1997. “On Expressing Topological Connectivity in Spatial Datalog”. In Constraint Databases and Applications, Second International Workshop on Constraint Database Systems, CDB'97. (Gaede, V., et al., eds.), Lecture Notes in Computer Science, Vol. 1191, Heidelberg, Springer Verlag, pp: 116–133.

    Google Scholar 

  • Neumann, K., & Morlock, M. 1993. Operations Research, Muenchen, Wien, Carl Hanser Verlag.

    Google Scholar 

  • Oliver, S.G. 1988. “A GIS Automation of County Tax Assessor Maps and Their Application for Siting the Superconducting Super Collider in Illinois”. In Proceedings of GISILIS'88, Third Annual International Conference, in San Antonio, Texas, Published by ACSM, ASPRS, AAG, URISA Accessing the World, Vol. 1, pp: 448–458.

    Google Scholar 

  • Raper, J. 1989. GIS: Three Dimensional Applications in Geographic Information Systems, London, Tayler and Francis.

    Google Scholar 

  • Rigaux, P., & Scholl, M. 1995. “Multi-Scale Partitions: Application to Spatial and Statistical Databases”. In Proceedings of Fourth International Symposium on Large Spatial Databases-SSD95, (Egenhofer, M.J., & Herring, J., eds.), in Portland, ME, Published by Springer Verlag, Heidelberg, Lecture Notes in Computer Science, Vol. 951, pp: 170–183.

    Google Scholar 

  • Tobler, W.R., & Wineberg, S. 1971. “A Cappadocian Speculation”. In Nature, 231 (May 7), pp: 39–42.

    Google Scholar 

  • Wallace, T., & Clark, S.R. 1988. “Raster and Vector Data Integration: Past Techniques, Current Capabilities, and Future Trends”. In Proceedings of GIS/LIS'88, Third Annual International Conference, in San Antonio, Texas, Published by ACSM, ASPRS, AAG, URISA, Accessing the World, Vol. 1, pp: 418–426. *** DIRECT SUPPORT *** A0008169 00008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen C. Hirtle Andrew U. Frank

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haunold, P., Grumbach, S., Kuper, G., Lacroix, Z. (1997). Linear constraints: Geometric objects represented by inequalitiesl. In: Hirtle, S.C., Frank, A.U. (eds) Spatial Information Theory A Theoretical Basis for GIS. COSIT 1997. Lecture Notes in Computer Science, vol 1329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63623-4_65

Download citation

  • DOI: https://doi.org/10.1007/3-540-63623-4_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63623-6

  • Online ISBN: 978-3-540-69616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics