Skip to main content

Average-case complexity of shortest-paths problems in the vertex-potential model

  • Approximation
  • Conference paper
  • First Online:
Book cover Randomization and Approximation Techniques in Computer Science (RANDOM 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1269))

Abstract

We study the average-case complexity of shortest paths problems in the vertex-potential model. The vertex-potential model is a family of probability distributions on complete directed graphs with arbitrary real edge lengths but without negative cycles. We show that on a graph with n vertices and with respect to this model, the single-source shortest-paths problem can be solved in O(n 2) expected time, and the all-pairs shortest-paths problem can be solved in O(n 2 log n) expected time.

Research supported by NSF grant CCR-9225008.

Research partially supported by ESPRIT LTR Project No. 20244 (ALCOM-IT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the shortest path problem, J. Assoc. Comput. Mach. 37 (1990) 213–223

    Google Scholar 

  2. R. Bellman, On a routing problem, Quart. Appl. Math. 16 (1958) 87–90

    Google Scholar 

  3. P. A. Bloniarz, A shortest-path algorithm with expected time O(n 2 log n log * n), SIAM J. Comput. 12 (1983) 588–600

    Google Scholar 

  4. B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest paths algorithms: Theory and experimental evaluation, Math. Programming 73 (1996) 129–174

    Google Scholar 

  5. B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, Buckets, heaps, lists, and monotone priority queues, Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans LA, 1997, 83–92

    Google Scholar 

  6. R. Davis and A. Prieditis, The expected length of a shortest path, Inform. Process. Lett. 46 (1993) 135–141

    Google Scholar 

  7. E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271

    Google Scholar 

  8. J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. Assoc. Comput. Mach. 19 (1972) 248–264

    Google Scholar 

  9. L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton NJ, 1962

    Google Scholar 

  10. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. Assoc. Comput. Mach. 34 (1987) 596–615

    Google Scholar 

  11. A. M. Frieze and G. R. Grimmett, The shortest-path problem for graphs with random arc-lengths, Discrete Appl. Math. 10 (1985) 57–77

    Google Scholar 

  12. A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM J. Comput. 24 (1995) 494–504

    Google Scholar 

  13. T. Hagerup and C. Rüb, A guided tour of Chernoff bounds, Inform. Process. Lett. 33 (1989/90) 305–308

    Google Scholar 

  14. R. Hassin and E. Zemel, On shortest paths in graphs with random weights, Math. Oper. Res. 10 (1985) 557–564

    Google Scholar 

  15. W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13–30

    Google Scholar 

  16. D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput. Mach. 24 (1977) 1–13

    Google Scholar 

  17. D. R. Karger, D. Koller, and S. J. Phillips, Finding the hidden path: Time bounds for all-pairs shortest paths, SIAM J. Comput. 22 (1993) 1199–1217

    Google Scholar 

  18. S. G. Kolliopoulos and C. Stein, Finding real-valued single-source shortest paths in o(n 3) expected time, in: W. H. Cunningham, S. T. McCormick, and M. Queyranne (Eds.), Integer Programming and Combinatorial Optimization (Lecture Notes in Computer Science; 1084), Springer-Verlag, Berlin, 1996, 94–104

    Google Scholar 

  19. C. C. McGeoch, All-pairs shortest paths and the essential subgraph, Algorithmica 13 (1995) 426–441

    Google Scholar 

  20. K. Mehlhorn and V. Priebe, On the all-pairs shortest-path algorithm of Moffat and Takaoka, Random Structures Algorithms 10 (1997) 205–220

    Google Scholar 

  21. A. Moffat and T. Takaoka, An all pairs shortest path algorithm with expected time O(n 2 log n), SIAM J. Comput. 16 (1987) 1023–1031

    Google Scholar 

  22. K. Noshita, A theorem on the expected complexity of Dijkstra's shortest path algorithm, J. Algorithms 6 (1985) 400–408

    Google Scholar 

  23. P. M. Spira, A new algorithm for finding all shortest paths in a graph of positive arcs in average time O(n 2 log2 n), SIAM J. Comput. 2 (1973) 28–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cooper, C., Frieze, A., Mehlhorn, K., Priebe, V. (1997). Average-case complexity of shortest-paths problems in the vertex-potential model. In: Rolim, J. (eds) Randomization and Approximation Techniques in Computer Science. RANDOM 1997. Lecture Notes in Computer Science, vol 1269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63248-4_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-63248-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63248-1

  • Online ISBN: 978-3-540-69247-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics