Approximation on the web: A compendium of NP optimization problems

  • P. Crescenzi
  • V. Kann
Invited Talk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1269)


A compendium of NP optimization problems, containing the best approximation results known for each problem, is now available on the web at In this paper we describe such a compendium, and specify how the compendium is consultable (and modifiable) on the world wide web.


Approximation Algorithm Approximability Result Inapproximability Result Good Approximation Result Fast Approximation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., and Lund, C. (1997), Hardness of approximations, chapter 10 of [11]. PWS, 1997.Google Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti Spaccamela, A., and Protasi, M. (1997), Approximate solution of NP-hard optimization problems. To appear (a preliminary version of some chapters is available on request to one of the authors).Google Scholar
  3. 3.
    Bovet, D., and Crescenzi, P. (1993), Introduction to the Theory of Complexity. Prentice Hall.Google Scholar
  4. 4.
    Bertsimas, D., Teo, C-P., and Vohra, R. (1996), “On dependent randomized rounding algorithms”, Proc. 5th Int. Conf. on Integer Prog. and Combinatorial Optimization, Lecture Notes in Comput. Sci. 1084, Springer-Verlag, 330–344.Google Scholar
  5. 5.
    Crescenzi, P., Kann, V., Silvestri, R., and Trevisan, L. (1995), “Structure in approximation classes”, Proc. 1st Ann. Int. Conf. on Computing and Combinatorics, Lecture Notes in Comput. Sci. 959, Springer-Verlag, 539–548.Google Scholar
  6. 6.
    Feige, U. (1996), “A threshold of In n for approximating set cover”, Proc. 28th Ann. ACM Symp. on Theory of Comp., ACM, 314–318.Google Scholar
  7. 7.
    Feige, U., and Goemans, M. X. (1995), “Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT”, Proc. 3rd Israel Symp. on Theory of Computing and Systems, IEEE Computer Society, 182–189.Google Scholar
  8. 8.
    Garey, M. R., and Johnson, D. S. (1979), Computers and Intractability: a guide to the theory of NP-completeness, W. H. Freeman and Company, San Francisco.Google Scholar
  9. 9.
    Goemans, M. X., and Williamson, D. P. (1995b), “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming”, J. ACM 42, 1115–1145.Google Scholar
  10. 10.
    Håstad, J. (1997), “Some optimal inapproximability results”, Proc. 29th Ann. ACM Symp. on Theory of Comp., ACM, 1–10.Google Scholar
  11. 11.
    Hochbaum, D. S. ed. (1997), Approximation algorithms for NP-hard problems, PWS Publishing Company, Boston.Google Scholar
  12. 12.
    Holyer, I. (1981), “The NP-completeness of edge-coloring”, SIAM J. Comp. 10, 718–720.Google Scholar
  13. 13.
    Johnson, D. S. (1974), “Approximation algorithms for combinatorial problems”, J. Comput. System Sci. 9, 256–278.Google Scholar
  14. 14.
    Kann, V. (1992b), On the Approximability of NP-complete Optimization Problems, PhD thesis, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm.Google Scholar
  15. 15.
    Nishizeki, T., and Kashiwagi, K. (1990), “On the 1.1 edge-coloring of multigraphs”, SIAM J. Disc. Math. 3, 391–410.Google Scholar
  16. 16.
    Papadimitriou, C.H. (1994), Computational Complexity. Addison-Wesley.Google Scholar
  17. 17.
    Papadimitriou, C.H., and Steiglitz, K. (1982), Combinatorial optimization: algorithms and complexity, Prentice Hall.Google Scholar
  18. 18.
    Papadimitriou, C. H., and Yannakakis, M. (1991), “Optimization, approximation, and complexity classes”, J. Comput. System Sci. 43, 425–440.Google Scholar
  19. 19.
    Petrank, E. (1994), “The hardness of approximation: gap location”, Computational Complexity 4, 133–157.Google Scholar
  20. 20.
    Vizing, V. G. (1964), “On an estimate of the chromatic class of a p-graph”, Diskret. Analiz. 3, 23–30.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • P. Crescenzi
    • 1
  • V. Kann
    • 2
  1. 1.Dipartimento di Scienze dell'InformazioneUniversità degli Studi di Roma “La Sapienza”RomeItaly
  2. 2.Department of Numerical Analysis and Computing ScienceRoyal Institute of TechnologyStockholmSweden

Personalised recommendations