Skip to main content

Improving spatial intersect joins using Symbolic Intersect Detection

  • Spatial Query Processing
  • Conference paper
  • First Online:
Advances in Spatial Databases (SSD 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1262))

Included in the following conference series:

Abstract

We introduce a novel technique to drastically reduce the computation required by the refinement step during spatial intersect join processing. This technique, called Symbolic Intersect Detection (SID), detects most of the true hits during a spatial intersect join by scrutinizing symbolic topological relationships between candidate polygon pairs. SID boosts performance by detecting true hits early during the refinement step, thus avoiding expensive polygon intersect computations that would otherwise be required to detect the true hits. Our experimental evaluation with real GIS map data demonstrates that SID can identify more than 80% of the true hits with only minimal overhead. Consequently, SID outperforms known techniques for resolving polygon intersection during the refinement step by more than 50%. Most state-of-the-art methods in spatial join processing can benefit from SID's performance gains because the SID approach integrates easily into the established two-phase spatial join process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinkhoff, T., Kriegel, H., and Seeger, B.: Efficient Processing of Spatial Joins Using R-trees. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1993) 237–246

    Google Scholar 

  2. Brinkhoff, T., Kriegel, H., Schneider, R., and Seeger, B.: Multi-Step Processing of Spatial Joins. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1994) 197–208

    Google Scholar 

  3. Burrough, P.A.: Principles of Geographic Information Systems for Land Resources Assessment. Oxford University Press (1986)

    Google Scholar 

  4. Gunther, O.: Efficient Computation of Spatial Joins. Proc. IEEE 9th Int. Conf. on Data Engineering. (1993) 50–59

    Google Scholar 

  5. Guttman, A.: R-tree: a dynamic index structure for spatial searching. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1984) 45–57

    Google Scholar 

  6. Huang, Y.W., Jing, N., and Rundensteiner, E.A.: Breadth-First R-tree Joins with Global Optimizations. EECS Technical Report, University of Michigan (1996)

    Google Scholar 

  7. Huang, Y.W., Jing, N., and Rundensteiner, E.A.: Integrated Query Processing Strategies for Spatial Path Queries. Proc. IEEE 13th Int. Conf. on Data Engineering. (1997)

    Google Scholar 

  8. Lo, M.L. and Ravishankar, C.V.: Spatial Hash-Joins. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1996) 247–258

    Google Scholar 

  9. Maguire, D.J., Goodchild, M.F., and Rhind, D.W.: Geographic Information Systems, volume 1. John Wiley & Sons, Inc. (1991)

    Google Scholar 

  10. Nievergelt, J. and Hinterberger, H.: The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database Systems. 9(1) (1984) 39–71

    Google Scholar 

  11. Orenstein, J.A.: Spatial Query Processing in an Object-Oriented Database System. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1986)

    Google Scholar 

  12. Orenstein, J.A.: A Comparison of Spatial Query Processing Techniques for Native and Parameter Spaces. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1990) 343–352

    Google Scholar 

  13. Patel, J.M. and DeWitt, D.J.: Partition Based Spatial-Merge Join. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1996) 259–270

    Google Scholar 

  14. Preparata, F.P. and Shamos, M.I.: Computational Geometry. Springer (1985).

    Google Scholar 

  15. Rotem, D.: Spatial Join Indices. Proc. IEEE 7th Int. Conf. on Data Engineering. (1991) 500–509

    Google Scholar 

  16. Shamos, M.I. and Hoey, D.J.: Geometric Intersection Problems. Proc. Conf. on Foundations of Computer Science. (1976) 208–215

    Google Scholar 

  17. Stonebraker, M., Frew, J., Gardels, K., and Meredith, J.: The SEQUOIA 2000 Storage Benchmark. Proc. ACM SIGMOD Int. Conf. on Management of Data. (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Scholl Agnès Voisard

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, YW., Jones, M., Rundensteiner, E.A. (1997). Improving spatial intersect joins using Symbolic Intersect Detection. In: Scholl, M., Voisard, A. (eds) Advances in Spatial Databases. SSD 1997. Lecture Notes in Computer Science, vol 1262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63238-7_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-63238-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63238-2

  • Online ISBN: 978-3-540-69240-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics