Skip to main content

Speeding-up digital ecologies evolution using a hardware emulator: Preliminary results

  • Evolware
  • Conference paper
  • First Online:
  • 123 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1259))

Abstract

For a more than a decade, the idea of applying the biological principle of natural evolution to artificial systems in order to create or to improve digital ecologies has emerged from different laboratories. During the past couple of years, a new trend consists in applying these investigations to hardware design. This concept is called “Evolvable Hardware”. For this quest, hardware emulation offers an alternative approach to the development of a generic evolvable system including fitness evaluation. Compared to a software solution, emulation can be on the order of a million times faster which is of higher interest when billion steps of evolution are necessary. A further advantage of emulation is to provide the description of the VLSI to be implemented as well as a validation of its behavior.

In this paper, we describe the way followed to implement the system (cellular automata and the surrounding evolutionary control logic) as a hardware description in an emulator. For different examples presented in this paper, reasonable with respect to simulation, processing time of hardware emulation versus software simulation are compared. The time saved by hardware emulation has given the opportunity to increase the complexity of the “evolving organism” by including the selection of intervening neighbors in the parameter selected by evolution.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown S. D., Francis R. J., Rose J., Vranesic Z. G.: Field-Programmable Gate Arrays. Kluwer Academic Publishers, 1992

    Google Scholar 

  • Codd E. F.: Cellular Automata. Academic Press, 1968

    Google Scholar 

  • Collins R. J. and Jefferson D. R.: “Antfarm: Towards Simulated Evolution” in Artificial Life II Santa Fe Institute Series, Studies in the Sciences of Complexity, Volume X, 579–603, Addison-Wesley, 1992

    Google Scholar 

  • Crutchfield J.P. and Mitchell M.: “The Evolution of Emergent Computation”, Proceedings of the National Academy of Sciences USA, 92(23), 1995

    Google Scholar 

  • Gutowitz H.: Cellular Automata — Theory and Experiment. Elsevier, 1990

    Google Scholar 

  • Hemmi H., Mizoguchi J. and Shimohara K.: “Development and evolution of hardware behaviors” in Artificial IV, Brooks R. A. and Maes P. (Eds.), MIT Press, Cambridge, MA, 371–376, 1994

    Google Scholar 

  • Higuchi T. and Hirao Y.: “Evolvable Hardware with Genetic Learning — Toward Faulttolerant Systems”, in Proc. of the Second Workshop on Synthetic World, Paris (F), 1995

    Google Scholar 

  • Kauffman S.: The Origins of Order — Self-organization and Slection in Evolution. Oxford University Press, New York, 1993

    Google Scholar 

  • Kauffman S.: At home in the Universe. Oxford University Press, New York, 1995

    Google Scholar 

  • Langton C: Cellular Automata Physica 10D, North-Holland, 1984

    Google Scholar 

  • Langton C: Artificial Life Santa Fe Institute Series, Studies in the Sciences of Complexity, Volume IV Addison-Wesley, 1989

    Google Scholar 

  • Langton C: “Artificial Life” in Artificial Life II Santa Fe Institute Series, Studies in the Sciences of Complexity, Volume X, Addison-Wesley, 1992

    Google Scholar 

  • Marchal P., Piguet C., Mange D., Stauffer A., Durand S.: “Embryological Development on Silicon” in Artificial IV, Brooks R. A. and Maes P. (Eds.), MIT Press, Cambridge, MA, 365–370, 1994

    Google Scholar 

  • Mitchell M., Hraber P.T. and Crutchfield J.P.: “Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations”, Complex Systems, 7:89–130, 1993

    Google Scholar 

  • Mitchell M., Crutchfield J.P. and Hraber P.T.: “Evolving Cellular Automata to Perform Computations: Mechanisms and Impediments”, Physica 75D, 361–391, 1994

    Google Scholar 

  • Mitchell M.: An Introduction to Genetic Algorithmss, MIT Press, Cambridge, MA, 1996

    Google Scholar 

  • Moore W. and Luk W.: FPGAs. Abingdon, 1991

    Google Scholar 

  • Moore W. and Luk W.: More FPGAs. Abingdon, 1994

    Google Scholar 

  • Ray T.S.: “An Approach to the Synthesis of Life”, in Artificial Life II Santa Fe Institute Series, Studies in the Sciences of Complexity, Volume X, 371–408, Addison-Wesley, 1992

    Google Scholar 

  • Sanchez E., Tomassini M. (Eds): Towards Evolvable Hardware — The Evolutionary Engineering Approach. Springer-Verlag, 1996

    Google Scholar 

  • Sipper M.: “Non-uniform Cellular Automata: Evolution in Rule Space and Formation of Complex Structures” in Artificial Life IV, R.A. Brooks and P. Maes (Eds), MIT Press, 1994

    Google Scholar 

  • Sipper M.: “Quasi-uniform Computation-Universal Cellular Automata” in Lecture Notes in Computer Science, Moreno A., J.J. Merelo and P. Chacón (Eds), Springer-Verlag, 1995

    Google Scholar 

  • Sipper M.: “Co-evolving non-uniform Celullar Automata to Perform Computations” in Physica 92 D, 193–208, North-Holland, 1996a

    Google Scholar 

  • Sipper M.: “Designing Evolware by Cellular Programming” in Proceedings of the First International Conference on Evolvable Systems: from Biology to Hardware, Tsukuba (Japan), 1996b

    Google Scholar 

  • Taub A. H.: John von Neumann — Collected Works. Volume V, 288–328. Macmillan, New York, 1961–1963

    Google Scholar 

  • Thearling K. and Ray T.S.: “Evolving Multi-Cellular Artificial Life”, in Artificial IV, Brooks R. A. and Maes P. (Eds.), MIT Press, Cambridge, MA, 283–288, 1994

    Google Scholar 

  • Ulam S.: “On Some Mathematical Problems Connected with Patterns of Growth of Figures”, in Essays on Cellular Automata, Burks A. W. (Ed.), Univ. of Illinois Press, 1970

    Google Scholar 

  • von Neumann J.: Theory of Self-Reproduction Automata. Edited and completed by A.W. Burks, Univ. of Illinois Press, 1966

    Google Scholar 

  • Wolfram S.: Theory and Applications of Cellular Automata. World Scientific Publishing Co. Pte. Ltd., 1986

    Google Scholar 

  • Zeleny M., Klir G. J. and Hofford K. D.: “Precipitation Membranes, Osmotic Growths and Synthetic Biology”, in Artificial Life Santa Fe Institute Series, Studies in the Sciences of Complexity, Volume IV, 125–139, Addison-Wesley, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuya Higuchi Masaya Iwata Weixin Liu

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marchal, P., Nussbaum, P., Piguet, C., Sipper, M. (1997). Speeding-up digital ecologies evolution using a hardware emulator: Preliminary results. In: Higuchi, T., Iwata, M., Liu, W. (eds) Evolvable Systems: From Biology to Hardware. ICES 1996. Lecture Notes in Computer Science, vol 1259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63173-9_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-63173-9_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63173-6

  • Online ISBN: 978-3-540-69204-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics