Skip to main content

Scale space versus topographic map for natural images

  • Invited Papers
  • Conference paper
  • First Online:
Scale-Space Theory in Computer Vision (Scale-Space 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1252))

Included in the following conference series:

Abstract

We call “natural” image any photograph of an outdoor or indoor scene taken by a standard camera. In such images, most observed objects undergo occlusions and the illumination condition and contrast response of the camera are unknown. Actual Scale Space theories do not incorporate obvious restrictions imposed by the physics of image generation. The heat equation (linear scale space) is not contrast invariant and destroys T-junctions. The same is true for the recently proposed curvature equations (mean curvature motion and affine shortening): They break the symmetry of junctions. To apply directly these models to natural world images, with occlusions, is irrevelant. Returning to the edge detection problem, in which scale space theory originates, we show how level lines can be found in an image without smoothing. As an alternative to edge detection/scale space, we propose to define the line structure in a natural image by its topographic map (set of all level lines). We also show that a modification of morphological scale space can help to the visualization of the topographic map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mechanics and Anal., 16, IX (1993), pp. 200–257.

    Google Scholar 

  2. L. Alvarez and J.M. Morel, Formalization and Computational Aspects of Image Analysis, Acta Numerica, 1994, Cambridge University Press.

    Google Scholar 

  3. L. Alvarez and F. Morales, Affine Morphological Multiscale Analysis of Corners and Multiple Junctions, Ref 9402, August 1994, Dept. Informatica y Systemas, Universidad de Las Palmas de Gran Canaria. To appear in International Journal of Computer Vision.

    Google Scholar 

  4. S. Angenent, Parabolic equations for curves on surfaces. Part I. Curves with p-integrable curvature., Ann. Math. 132 (1990) 451–483.

    Google Scholar 

  5. J. Babaud, A. Witkin, M. Baudin and R. Duda, Uniqueness of the gaussian kernel for scale space filtering, IEEE Trans. on Pattern Anal. Machine Intel., 8, 26–33, 1986.

    Google Scholar 

  6. B. Merriman, J. Bence and S. Osher, Motion of multiple junctions: a level set approach, CAM Report 93-19. Depart. of Mathematics. University of California, Los Angeles CA, June 1993.

    Google Scholar 

  7. V. Caselles, B. Coll and J.M. Morel, A Kanizsa programme., Preprint CEREMADE, Univ. Paris-Dauphine, 1995. Submitted to Int. J. Comp. Vision.

    Google Scholar 

  8. M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equation, Bull. Amer. Math. Soc., 27, 1–67, 1992.

    Google Scholar 

  9. R. Deriche and G. Giraudon, A computational approach for corner and vertex detection, International Journal of Computer Vision, 10, 2. 101–124, 1993.

    Google Scholar 

  10. L. C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Differential Geom., (33): 635–681, 1991.

    Google Scholar 

  11. W. Fuchs, Experimentelle Untersuchungen ueber das simultane Hintereinandersehen auf der selben Sehrichtung, Zeitschrift fuer Psychologie, 91, 154–253, 1923.

    Google Scholar 

  12. L.M.J. Florack, The syntactical structure of scalar images, PhD thesis, University of Utrecht, The Netherlands, 1993.

    Google Scholar 

  13. J. Froment et al., Mega Wave, image processing environment, Ceremade, 1997.

    Google Scholar 

  14. J.P. Fitch, E.C. Coyle and N.C. Gallagher, Threshold decomposition of multidimensional ranked order operations, IEEE Trans. on Circuits and Systems, 5, 445–450, 1985.

    Google Scholar 

  15. M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geometry 23, 69–96, 1986.

    Google Scholar 

  16. M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26, 285–314, 1987.

    Google Scholar 

  17. B.M. ter Haar Romeny, Geometry-Driven Diffusion in Computer Vision Kluwer Acad. Publ., 1994.

    Google Scholar 

  18. G. Kanizsa, Organization in Vision, N.Y. Praeger, 1979.

    Google Scholar 

  19. B.B. Kimia, A. Tannenbaum, and S.W. Zucker, On the evolution of curves via a function of curvature, 1: the classical case, J. of Math. Analysis and Applications 163, No 2, 1992.

    Google Scholar 

  20. J.J. Koenderink, The structure of images, Biological Cybernetics, 50, 363–370, 1984.

    Google Scholar 

  21. D. Marr, Vision, Freeman and Co., 1981.

    Google Scholar 

  22. J.M. Morel and S. Solimini, Variational methods in image processing, Birkhäuser, 1994.

    Google Scholar 

  23. M. Nitzberg, D.Mumford and T. Shiota, Filtering, Segmentation and Depth, Lecture Notes in Computer Science, 662, Springer-Verlag 1993.

    Google Scholar 

  24. S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation, J. Comp. Physics 79, 12–49, 1988.

    Google Scholar 

  25. G. Sapiro and A. Tannenbaum, On affine plane curve evolution, Journal of Functional Analysis, 119, 1, 79–120, 1994.

    Google Scholar 

  26. M. Wertheimer, Untersuchungen zur Lehre der Gestalt, II Psychologische Forschung, 4, 301–350, 1923.

    Google Scholar 

  27. A.P. Witkin, Scale-space filtering, Proc. of IJCAI, Karlsruhe 1983, 1019–1021.

    Google Scholar 

  28. A.L. Yuille and T.A. Poggio, Scaling theorems for zero-crossings, IEEE Trans. on Pattern Anal. Machine Intell., 8, 15–25, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bart ter Haar Romeny Luc Florack Jan Koenderink Max Viergever

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caselles, V., Coll, B., Morel, J.M. (1997). Scale space versus topographic map for natural images. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds) Scale-Space Theory in Computer Vision. Scale-Space 1997. Lecture Notes in Computer Science, vol 1252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63167-4_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-63167-4_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63167-5

  • Online ISBN: 978-3-540-69196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics