Skip to main content

Finite loops recognize exactly the regular open languages

  • Session 1: Formal Languages I
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1256))

Abstract

In this paper, we characterize exactly the class of languages that are recognizable by finite loops, i.e. by cancellative binary algebras with an identity. This turns out to be the well-studied class of regular open languages. Our proof technique is interesting in itself: we generalize the operation of block product of monoids, which is so useful in the associative case, to the situation where the left factor in the product is non-associative.

Work supported by FCAR (Québec) and CRSNG (Canada)

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Albert, Quasigroups I, Trans. Amer. Math. Soc., 54 (1943) 507–519. Quasigroups II, Trans. Amer. Math. Soc., 55 (1944) 401–419.

    Google Scholar 

  2. C.J. Ash, Inevitable sequences and a proof of the type II conjecture, Proc. of the Monash Conf. on Semigroup Theory, World Scientific, Singapore (1991) 31–42.

    Google Scholar 

  3. C.J. Ash, Inevitable graphs: a proof of the type II conjecture and some related decision procedures, Int. J. Alg. and Comp. 1 (1991) 127–146.

    Article  Google Scholar 

  4. D. Barrington and D. Thérien, “Finite Monoids and the Fine Structure of NC 1”, JACM 354(1988)941–952

    Article  Google Scholar 

  5. F. Bédard, F. Lemieux and P. McKenzie, Extensions to Barrington's M-program model, TCS 107 (1993), pp. 31–61.

    Google Scholar 

  6. J. Berman, A. Drisko, F. Lemieux, C. Moore, and D. Thérien, Circuits and Expressions with Non-Associative Gates, Submitted to 12th Annual Conference on Computational Complexity (CCC'97)

    Google Scholar 

  7. R.H. Brück, Contributions to the Theory of Loops, Trans. AMS 60 (1946) 245–354.

    Google Scholar 

  8. R.H. Brück, A Survey of Binary Systems, Springer-Verlag, 1966.

    Google Scholar 

  9. H. Caussinus and F. Lemieux, The complexity of computing over quasigroups, Proc. 14th annual FST&TCS, 1994, pp.36–47.

    Google Scholar 

  10. S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.

    Google Scholar 

  11. T. Evans, Embedding Incomplete Latin Squares, Amer. Math. Monthly, 67 pp. 958–961, 1960.

    Google Scholar 

  12. F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.

    Google Scholar 

  13. M. Hall Jr., A topology for free groups and related groups, Ann. of Maths 52 (1950) 127–139.

    Google Scholar 

  14. F. Lemieux, Finite groupoids and their applications to computational complexity, Ph.D. Thesis, McGill University, May 1996.

    Google Scholar 

  15. J. Mezei and J.B. Wright, Algebraic automata and context-free sets, Inform. and Contr. 11 (1967) 3–29.

    Google Scholar 

  16. J.-E. Pin, Varieties of Formal Languages, Plenum Press, New York, 1986.

    Google Scholar 

  17. J.-E. Pin, A topological approach to a conjecture of Rhodes, Bulletin of the Australian Mathematical Society 38 (1988) 421–431.

    Google Scholar 

  18. J.-E. Pin, Topologies for the free monoid, Journal of Algebra 137 (1991) 297–337.

    Article  Google Scholar 

  19. J.-E. Pin, Polynomial closure of group languages and open sets of the Hall topology, 21th ICALP, Springer-Verlag, LNCS 820, 1994, 424–435.

    Google Scholar 

  20. J.-E. Pin, BG=PG: A Success Story, Proc. of Intern. Conf. on Groups, Semigroups, and Formal Languages, York 1993, Kluwer Publisher.

    Google Scholar 

  21. C. Reutenauer, Une topologie du monoïde libre, Semigroup Forum 18 (1979), 33–49.

    Google Scholar 

  22. C. Reutenauer, Sur mon article “Une topologie du monoïde libre”, Semigroup Forum 22 (1981), 93–95.

    Google Scholar 

  23. J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure and Applied Algebra 62 (1989) 227–268.

    Google Scholar 

  24. M.-P. Schützenberger On finite monoids having only trivial subgroups, Information and Control 8 (1965) 190–194.

    Article  Google Scholar 

  25. D. Thérien, Two-sided wreath product of categories, J. Pure and Applied Algebra 74 (1991) 307–315.

    Google Scholar 

  26. L.G. Valiant, General context-free recognition in less than cubic time, J. Comput. System Sci. 10 (2) (1975) 308–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Thérien .

Editor information

Pierpaolo Degano Roberto Gorrieri Alberto Marchetti-Spaccamela

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beaudry, M., Lemieux, F., Thérien, D. (1997). Finite loops recognize exactly the regular open languages. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds) Automata, Languages and Programming. ICALP 1997. Lecture Notes in Computer Science, vol 1256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63165-8_169

Download citation

  • DOI: https://doi.org/10.1007/3-540-63165-8_169

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63165-1

  • Online ISBN: 978-3-540-69194-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics