A resultant theory for ordinary algebraic differential equations

  • Giuseppa Carra' Ferro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)


The notion of resultant of m+1 ordinary algebraic differential equations in m differential variables is introduced and some properties are shown. This notion extends the analogous one in the case m=1 given by the same author


Meromorphic Function Power Product Polynomial Ring Resultant Theory Differential Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berkovich, L., Tsirulik, V.:Differential resultants and some of their applications. Differential Equations. Plenum Publ. Corp. Vol. 22 No.5 (1986) 750–757Google Scholar
  2. 2.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. Proceedings of ISSAC95 (1995) 158–166Google Scholar
  3. 3.
    Carra'-Ferro, G.: A Resultant Theory for Systems of Linear Partial Differential Equations. Proceedings of Modern Group Analysys. Lie Groups and their Applications. vol. 1 (1994) 47–55Google Scholar
  4. 4.
    Carra'-Ferro, G.: A Resultant Theory for the Systems of Two Ordinary Algebraic Differential Equations, to appear in Applicable Algebra in Engineering, Communication and Computing. Springer-Verlag.(1995)Google Scholar
  5. 5.
    Chardin, M.: Differential Resultant and Subresultant. Proceedings of Fundamentals of Computation Theory. Budach L. (ed.). Lec. Notes in Comp. Sci. 529 (1991) 180–189Google Scholar
  6. 6.
    Cohn, R.: On the analog for differential equations of the Hilbert-Netto theorem. Bull. of the A.M.S. vol. 47 (1941) 268–270Google Scholar
  7. 7.
    Gonzalez-Vega, L.: Une theorie des sous-resultants pour les polynomes en plusieurs variables. C.R.Acad.Sci.Paris. t.313. Serie I. (1991) 905–908Google Scholar
  8. 8.
    Habicht, V.: Zur inhomogenen Eliminationstheorie. Comm.Math. Helvetici. 21. (1948) 79–98Google Scholar
  9. 9.
    Kolchin, E.: On the basis theorem for differential systems. Trans. Amer. Math. Soc. vol. 52 (1942) 115–127Google Scholar
  10. 10.
    Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press. New York (1973)Google Scholar
  11. 11.
    Li, Z.: A Subresultant Theory for Linear Ordinary Differential Polynomials. RISC-Linz Techn. Report Series N.95-35 (1995)Google Scholar
  12. 12.
    Macaulay, F.: Some Formulae in Elimination. Proc. Lond. Math. Soc. (1) 35 (1903) 3Google Scholar
  13. 13.
    Macaulay, F.: The Algebraic Theory of Modular Systems. Proc. Cambridge Univ. Press (1916)Google Scholar
  14. 14.
    Ore, O.: Reine Angew. Math. 167 (1932) 221–234Google Scholar
  15. 15.
    Perron, O.: Algebra I die Grundlagen. de Gruyter & Co. Berlin (1951)Google Scholar
  16. 16.
    Raudenbush Jr., H.: On the analog for differential equations of the Hilbert-Netto theorem. Bull. of the A.M.S. vol. 42 (1936) 371–373Google Scholar
  17. 17.
    Ritt, J.: Differential Equations From The Algebraic Standpoint” AMS Coll. Publ. vol.14 New York (1932)Google Scholar
  18. 18.
    Ritt, J.: Differential Algebra” AMS Coll.Publ. vol.33 New York (1950)Google Scholar
  19. 19.
    Seidenberg, A.: Some basic theorems in differential algebra (characteristic p, arbitrary). Trans. Amer. Math. Soc. vol. 73 (1952) 174–190Google Scholar
  20. 20.
    Seidenberg, A.: An elimination theory for differential algebra. Univ California Publ. Math. (N.S.) (1956) 31–65Google Scholar
  21. 21.
    Van der Waerden, B.: Modern Algebra II. Third Edition. F.Ungar Publishing Co., New York (1950)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Giuseppa Carra' Ferro
    • 1
  1. 1.Dipartimento di MatematicaUniversita' di CataniaCataniaItaly

Personalised recommendations