Nonperiodic cyclic equivalence classes of cyclic codes and algebraic constructions of cyclically permutable codes

  • Shutao Xia
  • Fangwei Fu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)


The exact number of nonperiodic cyclic equivalence classes (NCEC) in cyclic code is determined. By NCEC, several algebraic constructions of cyclically permutable (CP) codes are given in this paper. These constructions can yield good (large size) CP codes. Furthermore, we present detailed discussions for some well known cyclic codes. By using the above CP codes, we can obtain good (large size) binary constant weight CP codes and protocol-sequence sets for collision channel without feedback according the methods in [1].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.Q. A, L. Györfi, and J.L. Massey. “Constructions of binary constant-weight cyclic codes”, IEEE Trans. Inform. Theory, 1992, 38(3): 940–949.Google Scholar
  2. 2.
    H. Song, I. Reed, S. Golomb. “On the nonperiodic cyclic equivalence classes of Reed-Solomon codes,” IEEE Trans. on Inform. Theory, 1993, 39(4): 1431–1434.Google Scholar
  3. 3.
    L. Györfi, I. Vajda. “Constructions of protocol sequence for multiple access collision channel without feedback,” IEEE Trans. on Inform. Theory, 1993, 39(5): 1762–1765.Google Scholar
  4. 4.
    N.Q. A, “Families of sequences with optimal generalized Hamming correlation properties,” Problems of Control and Information Theory, 1988, 17(3): 117–123.Google Scholar
  5. 5.
    E.N. Gilbert. “Cyclically permutable error-correcting codes,” IEEE Trans. on Inform. Theory, vol. 9, pp. 175–182, July 1963.Google Scholar
  6. 6.
    E.R. Berlekamp and J. Justesen. “Some long cyclic linear binary codes are not so bad,” IEEE Trans. on Inform. Theory, vol. 20, pp. 351–356, May 1974.Google Scholar
  7. 7.
    C. Kościelny. “Constructing a better cyclic code than cyclic Reed-Solomon code,” IEEE Trans. on Inform. theory, 1995, 41(4): 1191–1194.Google Scholar
  8. 8.
    A.W. Lam and D.V. Sarwate. “Time-hopping and frequency-hopping multipleacces packet communications,” IEEE Trans. on Commun., 1990, 38(6): 875–888.Google Scholar
  9. 9.
    I. Vajda and G. Einarsson. “Code acquisition for a frequency-hopping system,” IEEE Trans. Commun., 1987, 35(5): 566–568.Google Scholar
  10. 10.
    R. Gagliardi, J. Robbins and H. Taylor. “Acquisition sequence in PPM communications,” IEEE Trans. on Inform. Theory, 1987, 33(5): 738–744.Google Scholar
  11. 11.
    R. Blahut. Theory and Practice of Error Control Codes, Addison-Wesley, 1987.Google Scholar
  12. 12.
    D.M. Burton. Elementary Number theory, Boston, MA: Allyn and Bacon Inc., 1980.Google Scholar
  13. 13.
    Z.X. Wan. Algebra and Coding (in Chinese), Beijing: Science Press, 1984.Google Scholar
  14. 14.
    S. Roman. Coding and Information Theory, Berlin: Springer-Verlag, 1992.Google Scholar
  15. 15.
    H.F. Mattson and G. Solomon. “A new treatment of Bose-Chaudhuri codes,” J. SIAM, 1961, vol. 9, pp. 654–669. reprinted in Key Papers in the Development of Coding Theory, E. R. Berlekamp, ed., 82–86, New York: IEEE Press, 1974.Google Scholar
  16. 16.
    F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes, New York: North-Holland, 1977.Google Scholar
  17. 17.
    B. Elspas. “The Theory of Autonomous Linear Sequential Networks,” IRE Transactions on Circuit Theory, vol. CT-6, pp. 45–60, March 1959. reprinted in Linear Sequential Switching Circuits: Selected Technical Papers, W. Kautz, ed., 21–61, San Francisco, Holden-Day, 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Shutao Xia
    • 1
  • Fangwei Fu
    • 1
  1. 1.Department of MathematicsNankai UniversityTianjinChina

Personalised recommendations