Advertisement

An iterative probabilistic decoding algorithm for binary linear block codes beyond the half minimum distance

  • Miodrag J. Mihaljević
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)

Abstract

An algorithm for decoding of linear binary block codes based on the iterative probabilistic error-correction is considered theoretically and experimentally. Assuming the sparse code parity-check matrix it is demonstrated that, with probability close to one, the algorithm works far beyond the half minimum distance with complexity linearly proportional to the codeword length and the average number of per bit employed parity-checks.

Keywords

Block Code Decode Algorithm Symbol Error Rate Extrinsic Information Iterative Decode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes,” Proc. IEEE Int. Conf. on Communications, Geneva, Switzerland, pp. 1064–1070, 1993.Google Scholar
  2. 2.
    M. Bossert and F. Hergert, “Hard-and Soft-Decision Decoding Beyond the Half Minimum Distance —An Algorithm for Linear Codes”, IEEE Trans. Inform. Theory, vol. IT-32, pp. 709–714, 1986.Google Scholar
  3. 3.
    D. Chase, “A Class of Algorithms for Decoding Block Codes with Channel Measurement Information”, IEEE Trans. Inform. Theory, vol. IT-18, pp. 170–182, Jan. 1972.Google Scholar
  4. 4.
    A. Clark, J. Dj. Golić, and E. Dawson, “A Comparison of Fast Correlation Attacks,” Fast Software Encryption-Cambridge '96, Lecture Notes in Computer Science, vol. 1039, pp. 145–157, 1996.Google Scholar
  5. 5.
    G. C. Clark, Jr. and J. B. Cain, Error-Correcting Coding for Digital Communications. New York: Plenum Press, 1982.Google Scholar
  6. 6.
    G. D. Forney, “Generalized Minimum Distance Decoding”, IEEE Trans. Inform. Theory, vol. IT-12, pp. 125–131, Apr. 1966.CrossRefGoogle Scholar
  7. 7.
    R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.Google Scholar
  8. 8.
    C. R. P. Hartmann and L. D. Rudolph, “An Optimum Symbol-by-Symbol Decoding Rule for Linear Codes”, IEEE Trans. Inform. Theory, vol. IT-22, pp. 514–517, 1976.Google Scholar
  9. 9.
    J. Hagenauer, E. Offer and L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes”, IEEE Trans. Inform. Theory, vol. IT-42, pp. 429–445, 1996.Google Scholar
  10. 10.
    T. Kaneko, T. Nishijama, H. Inazumi and S. Hirasava, “An Efficient Maximum-Likelihood-Decoding Algorithm for Linear Block Codes with Algebraic Decoder”, IEEE Trans. Inform. Theory, vol. 40, pp. 320–327, March 1994.Google Scholar
  11. 11.
    T. Koumoto, T. Takata, T. Kasami and S. Lin, “An Iterative Soft-Decision Decoding Algorithm”, Proc. 1996 IEEE Int. Symp. Inform. Theory and Its Appl., Victoria, B.C., Canada, pp. 806–810, 1996.Google Scholar
  12. 12.
    R. Lucas, M. Bessert and M. Breitbach, “Iterative Soft Decision Decoding of Linear Binary Block Codes”, Proc. 1996 IEEE Int. Symp. Inform. Theory and Its Appl., Victoria, B.C., Canada, pp. 811–814, 1996.Google Scholar
  13. 13.
    J. L. Massey, Threshold Decoding. Cambridge, MA: MIT Press, 1963.Google Scholar
  14. 14.
    W. Meier and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ciphers,” Journal of Cryptology, vol. 1, pp. 159–176, 1989.Google Scholar
  15. 15.
    M. J. Mihaljević and J. Dj. Golić, “A Comparison of Cryptanalytic Principles Based on Iterative Error-Correction,” Advances in Cryptology-EUROCRYPT '91, Lecture Notes in Computer Science, vol. 547, pp. 527–531, 1991.Google Scholar
  16. 16.
    M. J. Mihaljević and J. Dj. Golić, “A Method for Convergence Analysis of Iterative Error-Correction Decoding”, Proc. 1996 IEEE Int. Symp. Inform. Theory and Its Appl., Victoria, B.C., Canada, pp. 802–805, 1996.Google Scholar
  17. 17.
    J. E. M. Nilsson, “Difference Between Two-Soft Decision Decoding Algorithms”, Electronics Letters, vol. 30, pp. 1665–1666, Sep. 1994.Google Scholar
  18. 18.
    W. W. Peterson and E. J. Weldon, Error-Correcting Codes. Cambridge MA: MIT Press, 1972.Google Scholar
  19. 19.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. New-York: North Holland, 1977.Google Scholar
  20. 20.
    K. Zeng and M. Huang, “On the Linear Syndrome Method in Cryptanalysis,” Advances in Cryptology-CRYPTO '88, Lecture Notes in Computer Science, vol. 403, pp. 469–478, 1990.Google Scholar
  21. 21.
    M. Živković, “On Two Probabilistic Decoding Algorithms for Binary Linear Codes,” IEEE Trans. Inform. Theory, vol. IT-37, pp. 1707–1716, Nov. 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Miodrag J. Mihaljević
    • 1
  1. 1.Institute of Applied Mathematics and Electronics Institute of MathematicsAcademy of Science and ArtsBelgradeYugoslavia

Personalised recommendations