A brief tour of split linear programming

  • David B. Jaffe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)


I describe a new computer language Split, which has been used to prove hundreds of new nonexistence results for binary linear codes with specific parameters. The main topic of the paper is split linear programming, a generalization of Delsarte's original linear programming method.


Computer Language Weight Enumerator Float Point Arithmetic Linear Programming Method Binary Linear Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bierbrauer, J. and Y. Edel: Construction of digital nets from BCH-codes, preprint.Google Scholar
  2. [2]
    Bierbrauer, J. and Y. Edel: Parameters for binary codes, preprint, accessible over the World Wide Web via, 1996.Google Scholar
  3. [3]
    Brouwer, A. E.: The linear programming bound for binary linear codes, IEEE Trans. Inform. Theory 39 (1993), 677–680.Google Scholar
  4. [4]
    Brouwer, A. E. and T. Verhoeff: An updated table of minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Theory 39 (1993), 662–677, supplemented by on-line updates: information regarding [n, k, d] codes with fixed n, k is accessible over the World Wide Web via and may also be obtained by sending electronic mail to with the subject lexec lincodbd and a message body consisting of the single line llincodbd 2 n k.Google Scholar
  5. [5]
    Delsarte, P.: Bounds for unrestricted codes, by linear programming, Philips Res. Reports 27 (1972), 272–289.Google Scholar
  6. [6]
    Heijnen, P. W.: Er bestaat geen binaire [33, 9, 13] code, Afstudeerverslag, T. U. Delft, 1993.Google Scholar
  7. [7]
    Jaffe, D. B.: Binary linear codes: new results on nonexistence, preprint, accessible over the World Wide Web via or code.dvi.gz.Google Scholar
  8. [8]
    Jaffe, D. B. and D. Ruberman: A sextic surface cannot have 66 nodes, J. of Algebraic Geometry 6 (1997), 151–168.Google Scholar
  9. [9]
    Kostova, B. K. and N. L. Manev: A [25, 8, 10] code does not exist, C. R. Acad. Bulgare Sci. 43 (1990), 41–44.Google Scholar
  10. [10]
    Lawrence, K. M.: Construction of (t, m, s)-nets and orthogonal arrays from binary codes, preprint, 1996.Google Scholar
  11. [11]
    Lawrence, K. M., A. Mahalanabis, G. L. Mullen and W. C. Schmid: Finite Fields and Applications: proceedings of the third international conference, Glasgow, July 1995, Cambridge Univ. Press, ed. S. Cohen, H. Niederreiter, 1996.Google Scholar
  12. [12]
    MacWilliams, F. J. and N. J. A. Sloane: The Theory of Error-Correcting Codes, North-Holland (Amsterdam), 1977.Google Scholar
  13. [13]
    Simonis, J.: MacWilliams identities and coordinate partitions, Linear Algebra Appl. 216 (1995), 81–91.Google Scholar
  14. [14]
    van Tilborg, H.: On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound, Inform. and Control 44 (1980), 16–35.Google Scholar
  15. [15]
    Ytrehus, Ø. and T. Helleseth: There is no binary [25, 8, 10] code, IEEE Trans. Inform. Theory 36 (1990), 695–696.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • David B. Jaffe
    • 1
  1. 1.University of NebraskaLincolnUSA

Personalised recommendations