Advertisement

Codes from cocycles

  • K. J. Horadam
  • A. A. I. Perera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)

Abstract

We demonstrate that many techniques for generating error-correcting codes are cocyclic; that is, derived from 2-dimensional cocycles or cocyclic matrices. These cocyclic codes include classes of self-dual codes, quasi-twisted codes and, trivially, all the group ring codes and the group codes for the Gaussian channel. We believe this link between algebraic coding theory and low-dimensional group cohomology leads to (i) new ways to generate codes; (ii) a better understanding of the structure of some known codes and (iii) a better understanding of known construction techniques.

Keywords

Linear Code Central Extension Group Ring Cyclic Code Projective Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baliga, A., Doubly-even self-dual codes from cocyclic Hadamard matrices, Research Report No. 9, Mathematics Department RMIT, July 1996.Google Scholar
  2. 2.
    Baliga, A., personal communication, November 1996.Google Scholar
  3. 3.
    Baliga, A., Horadam, K. J., Cocyclic Hadamard matrices over ℤt x ℤ22, Australas. J. Combin., 11 (1995) 123–134.Google Scholar
  4. 4.
    Beth, Th., Jungnickel, D., Lenz, H., Design Theory, CUP, Cambridge, 1993.Google Scholar
  5. 5.
    Beth, Th., Kalouti, H., Lazic, D. E., Which families of long binary linear codes have a binomial weight distribution?, in Proc. AAECC-11, Lecture Notes in Computer Science 948, eds. G. Cohen, M. Giusti, T. Mora, Springer (1995), 120–130.Google Scholar
  6. 6.
    Blake, I. F., and Mullin, C., The Mathematical Theory of Coding, Academic Press, New York, 1975.Google Scholar
  7. 7.
    Brown, K. S., Cohomology of Groups, Springer, New York, 1982.Google Scholar
  8. 8.
    Conway, J. H., Sloane, N. J. A., A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory IT-36 (1990), 1319–1333.Google Scholar
  9. 9.
    de Launey, W., On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.Google Scholar
  10. 10.
    de Launey, W., Generalised Hadamard matrices which are developed modulo a group, Discrete Mathematics 104 (1992), 49–65.Google Scholar
  11. 11.
    de Launey, W., Horadam, K. J., A weak difference set construction for higher-dimensional designs, Designs, Codes and Cryptography, 3 (1993), 75–87.Google Scholar
  12. 12.
    Flannery, D. L., Transgression and the calculation of cocyclic matrices, Australas. J. Combin., 11 (1995) 67–78.Google Scholar
  13. 13.
    Flannery, D. L., Calculation of cocyclic matrices, J. Pure Appl. Algebra, 112 (1996) 181–190.Google Scholar
  14. 14.
    Flannery, D. L., Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra, to appear.Google Scholar
  15. 15.
    Gulliver, T. A., New quaternary linear codes of dimension 5, Proc. 1995 IEEE International Symposium on Infirmation Theory, 493.Google Scholar
  16. 16.
    Hammons, A., Kumar, V., Calderbank, A., Sloane, N., Solé, P.. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory IT-40 (1994), 301–319.Google Scholar
  17. 17.
    Harada, M., Tonchev, V. D., Singly-even self-dual codes and Hadamard matrices, in Proc. AAECC-11, Lecture Notes in Computer Science 948, eds. G. Cohen, M. Giusti, T. Mora, Springer (1995), 279–284.Google Scholar
  18. 18.
    Holzmann, W. H., Kharaghaui, H., A computer search for complex Golay sequences, Australas. J. Combin., 10 (1994), 251–258.Google Scholar
  19. 19.
    Horadam, K. J., de Launey, W., Cocyclic development of designs, J. Algebraic Combinatorics 2 (1993) 267–290.Google Scholar
  20. 20.
    Horadam, K. J., de Launey, W., Generation of cocyclic Hadamard matrices, Chap. 20 in Computational Algebra and Number Theory, eds. W. Bosma, A. van der Poorten, Mathematics and its Applications 325, Kluwer Academic, Dordrecht, 1995.Google Scholar
  21. 21.
    Horadam, K. J., Flannery, D., and de Launey, W., Cocyclic Hadamard matrices and difference sets, preprint, 1996.Google Scholar
  22. 22.
    Horadam, K. J., Lin, C., Construction of proper higher dimensional Hadamard matrices from perfect binary arrays, Research Report No. 14, Mathematics Department RMIT, November 1995.Google Scholar
  23. 23.
    Karpilovsky, G., Projective Representations of Finite Groups, Marcel Dekker, New York, 1985.Google Scholar
  24. 24.
    Kasami, T., A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2, IEEE-Trans IT, IT-20 (1974) 679.Google Scholar
  25. 25.
    Mackenzie, C. and Seberry, J., Maximal q-ary codes and Plotkin's bound, Ars Combin. 26B (1988) 37–50.Google Scholar
  26. 26.
    Mackey, G. W., Induced Representations of Groups and Quantum Mechanics, W. A. Benjamin, New York, 1968.Google Scholar
  27. 27.
    MacLane, S., Homology, 3rd corr. printing, Springer, Berlin, 1975.Google Scholar
  28. 28.
    MacWilliams, F. J., Sloane, N. J. A., The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.Google Scholar
  29. 29.
    Poli, A., Huguet, L., Error Correcting Codes, Theory and Applications, Prentice Hall, 1992.Google Scholar
  30. 30.
    Pott, A., Finite Geometry and Character Theory, LNM 1601, Springer, 1995.Google Scholar
  31. 31.
    Sabin, R. E., On determining all codes in semi-simple group rings, Proc. AAECC-10, Lecture Notes in Computer Science 673, Springer (1993), 279–290.Google Scholar
  32. 32.
    Slepian, D., Group codes for the Gaussian channel, Bell Syst. Tech. J. 47 (1968) 575–602.Google Scholar
  33. 33.
    Tonchev, V. D., Self-orthogonal designs and extremal doubly even codes, J. Combin. Th. Ser. A 52 (1989), 197–205.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • K. J. Horadam
    • 1
  • A. A. I. Perera
    • 1
  1. 1.Royal Melbourne Institute of TechnologyMelbourneAustralia

Personalised recommendations