Certain self-dual codes over ℤ4 and the odd Leech lattice

  • T. Aaron Gulliver
  • Masaaki Harada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)


Recently, alternative constructions of the Leech lattice and the shorter Leech lattice have been discovered using self-dual codes over ℤ4. In this paper, we provide a classification of length 24 double circulant Type I codes over ℤ4 with minimum Euclidean weight 12. These codes determine (via Construction A4) the odd Leech lattice, which is a unique 24-dimensional odd unimodular lattice with minimum norm 3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bannai, S.T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices and invariant rings, (in preparation).Google Scholar
  2. 2.
    A. Bonnecaze, P. Solé and A.R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory Vol. 41 (1995) pp. 366–377.Google Scholar
  3. 3.
    A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over ℤ4, IEEE Trans. Inform. Theory, (to appear).Google Scholar
  4. 4.
    A.R. Calderbank and N.J.A. Sloane, Double circulant codes over ℤ4 and even unimodular lattices, J. Alg. Combin., (to appear).Google Scholar
  5. 5.
    J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A Vol. 62 (1993) pp. 30–45.Google Scholar
  6. 6.
    J.H. Conway and N.J.A. Sloane, Sphere Packing, Lattices and Groups (2nd ed.), Springer-Verlag, New York, 1993.Google Scholar
  7. 7.
    S.T. Dougherty, T.A. Gulliver and M. Harada, Type II self-dual codes over finite rings and even unimodular lattices, (submitted to J. Alg. Combin.).Google Scholar
  8. 8.
    T.A. Gulliver and M. Harada, Extremal double circulant Type II codes over ℤ4 and construction of 5-(24,10,36) designs, (submitted to Discrete Math.).Google Scholar
  9. 9.
    M. Harada, New extremal Type II codes over ℤ4, (submitted to Des. Codes and Cryptogr.).Google Scholar
  10. 10.
    V. Pless, P. Solé and Z. Qian, Cyclic self-dual ℤ4-codes, Finite Fields and Their Appl. Vol. 3 (1997) pp. 48–69.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • T. Aaron Gulliver
    • 1
  • Masaaki Harada
    • 2
  1. 1.Department of Electrical and Electronic EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department of Mathematical SciencesYamagata UniversityYamagataJapan

Personalised recommendations