Skip to main content

Mapping the cerebral sulci: Application to morphological analysis of the cortex and to non-rigid registration

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1230))

Abstract

We propose a methodology for extracting parametric representations of the cerebral sulci from magnetic resonance images, and we consider its application to two medical imaging problems: quantitative morphological analysis and spatial normalization and registration of brain images. Our methodology is based on deformable models utilizing characteristics of the cortical shape. Specifically, a parametric representation of a sulcus is determined by the motion of an active contour along the medial surface of the corresponding cortical fold. The active contour is initialized along the outer boundary of the brain, and deforms toward the deep edge of a sulcus under the influence of an external force field restricting it to lie along the medial surface of the particular cortical fold. A parametric representation of the surface is obtained as the active contour traverses the sulcus. In this paper we present results of this methodology and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Davatzikos, M. Vaillant, S. Resnick, J.L. Prince, S. Letovsky, and R.N. Bryan. A computerized approach for morphological analysis of the corpus callosum. J. of Comp. Assisted Tomography, 20:88–97, Jan./Feb. 1996.

    Google Scholar 

  2. F.L. Bookstein. Biometrics, biomathematics, and the morphometric synthesis. Bulletin of Mathematical Biology, 58:313–365, 1996.

    PubMed  Google Scholar 

  3. G. Szekely, A. Kelemen, C. Brechbuhler, and G. Gerig. Segmentation of 2-D and 3-D objects from MRI volume data using constrained deformations of flexible Fourier contour and surface models. Medical Image Analysis, 1:19–34, 1996.

    PubMed  Google Scholar 

  4. M. Vaillant, C. Davatzikos, and R.N. Bryan. Finding 3D parametric representations of the deep cortical folds. Proc. of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages 151–159, June 1996.

    Google Scholar 

  5. J.-F. Mangin, J. Regis, I. Bloch, V. Frouin, Y. Samson, and J. López-Krahe. A MRF based random graph modeling the human cortical topography. In Proc. First Int. Conf., CVRMed, pages 177–183, Nice, France, 1995.

    Google Scholar 

  6. S.M. Pizer, J.M. Coggins, C.A. Burbeck, B.S. Morse, and D. Fritsch. Object shape before boundary shape: Scale-space medial axes. Journal of Mathematical Imaging and Vision, 4:303–313, 1994.

    Google Scholar 

  7. B.S. Morse, S.M. Pizer, and A. Liu. Multiscale medial analysis of medical images. Image and Vision Computing, 12(6):327–338, July/August 1994.

    Google Scholar 

  8. P.M. Thompson, C. Schwartz, and A.W. Toga. High resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain. Neuroimage, 3:19–34, 1996.

    PubMed  Google Scholar 

  9. G. Le Goualher, C. Barillot, L. Le Briquer, J.C. Gee, and Y. Bizais. 3D detection and representation of cortical sulci. Proc. Computer Assisted Radiology, symposium on Computer and Communication Systems for Image Guided Diagnosis and Therapy, pages 234–240, June 1995.

    Google Scholar 

  10. F. Kruggel. Automatical adaption of anatomical masks to the neocortex. Proc. Int. Conf. on Computer Vision, Virtual Reality and Robotics in Medicine, pages 231–236, April 1995.

    Google Scholar 

  11. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1:321–331, 1988.

    Article  Google Scholar 

  12. C.A. Davatzikos and J.L. Prince. An active contour model for mapping the cortex. IEEE Trans. on Medical Imaging, 14:65–80, 1995.

    Google Scholar 

  13. C. Davatzikos. Spatial normalization of 3D images using deformable models. J. Comp. Assist. Tomogr., 20:656–665, July/August 1996.

    Google Scholar 

  14. S.R. Sandor. Atlas-Guided Deformable Models for Automatic Labeling of Magnetic Resonance Brain Images. PhD thesis, Un. of Southern California, 1994.

    Google Scholar 

  15. P. Thompson and A.W. Toga. A surface-based technique for warping three-dimensional images of the brain. IEEE Trans. on Med. Imaging, 15:402–417, 1996.

    Google Scholar 

  16. C. Davatzikos. Nonlinear registration of brain images using deformable models. Proc. of the Workshop on Math. Meth. in Biom. Image Anal., pages 94–104, June 1996.

    Google Scholar 

  17. C. Davatzikos and R.N. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans. on Med. Imaging, 15:785–795, Dec. 1996.

    Google Scholar 

  18. M.I. Miller, G.E. Christensen, Y. Amit, and U. Grenander. Mathematical textbook of deformable neuroanatomies. Proc. of the National Academy of Sciences, 90:11944–11948, 1993.

    Google Scholar 

  19. A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, and T.M. Peters. 3D statistical neuroanatomical models from 305 MRI volumes. Proc. of the IEEE Nucl. Sc. Symposium and Med. Imaging Conf., 3:1813–1817, 1993.

    Google Scholar 

  20. C. Davatzikos and J.L. Prince. Brain image registration based on curve mapping. Proc. of the IEEE Workshop on Biomedical Image Analysis, pages 245–254, 1994.

    Google Scholar 

  21. C. Davatzikos, J.L. Prince, and R.N. Bryan. Image registration based on boundary mapping. IEEE Trans. on Med. Imaging, 15(1):112–115, Feb. 1996.

    Google Scholar 

  22. M. Vaillant and C. Davatzikos. Finding parametric representations of the cortical sulci using an active contour model. Medical Image Analysis, 1997. accepted.

    Google Scholar 

  23. H. Blum and R.N. Nagel. Shape description using weighted symmetric axis features. Patt. Recog., 10:167–180, 1978.

    Google Scholar 

  24. C. Davatzikos and R.N. Bryan. Using a deformable surface model to obtain a mathematical representation of the cortex. Proc. of the IEEE Comp. Vision Symp., pages 212–217, Nov. 1995.

    Google Scholar 

  25. J.P. Thirion, O. Monga, S. Benayoun, A. Gueziec, and N. Ayache. Automatic registration of 3-D images using surface curvature. SPIE Proc., Mathematical Methods in Medical Imaging, 1768:206–216, 1992.

    Google Scholar 

  26. G. Subsol, J.P. Thirion, and N. Ayache. First steps towards automatic building of anatomical atlases. INRIA, Technical Report N∘ 2216, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Duncan Gene Gindi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaillant, M., Davatzikos, C. (1997). Mapping the cerebral sulci: Application to morphological analysis of the cortex and to non-rigid registration. In: Duncan, J., Gindi, G. (eds) Information Processing in Medical Imaging. IPMI 1997. Lecture Notes in Computer Science, vol 1230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63046-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-63046-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63046-3

  • Online ISBN: 978-3-540-69070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics