Skip to main content

Large scale traffic simulations

  • Conference paper
  • First Online:
Vector and Parallel Processing — VECPAR'96 (VECPAR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Included in the following conference series:

Abstract

Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated “looping” between the microsimulation and the simulated planning of individual person's behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million “particle” (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Cohen and F. Kelly. A paradox of congestion in a queueing network. J. Appl. Probability, 27:730–734, 1990.

    Google Scholar 

  2. M. Williams. Personal communication.

    Google Scholar 

  3. L. Smith, R. Beckman, D. Anson, K. Nagel, and M. Williams. Transims: Transportation analysis and simulation system. In Proc. 5th Nat. Transportation Planning Methods Applications Conference, Seattle, 1995.

    Google Scholar 

  4. J. Morrison and V. Loose. Transims model design criteria as derived from federal legislation. Technical report, Los Alamos National Laboratory, 1995.

    Google Scholar 

  5. C. Barrett, K. Berkbigler, L. Smith, V. Loose, R. Beckman, J. Davis, D. Roberts, and M. Williams. An operational description of transims. Technical report, Los Alamos National Laboratory, 1995.

    Google Scholar 

  6. L.L. Smith. TRANSIMS Travelogue. Travel model improvement program newsletter, 2–5, 1995–1996.

    Google Scholar 

  7. TRANSIMS web page, http://www-transims.tsasa.lanl.gov/.

    Google Scholar 

  8. R. Schwarzmann. Das EUROTOPP Modell, SCOPE/VIKTORIA-Bericht. Technical report, Institut für Verkehrswesen, TH Karlsruhe, July 1992.

    Google Scholar 

  9. K. Nagel. Freeway traffic, cellular automata, and some (self-organizing) criticality. In R.A. de Groot and J. Nadrchal, editors, Physics Computing '92, page 419. World Scientific, 1993.

    Google Scholar 

  10. K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic. J. Phys. I France, 2:2221, 1992.

    Google Scholar 

  11. K. Nagel. Particle hopping models and traffic flow theory. Phys. Rev. E, 53(5):4655, 1996.

    Google Scholar 

  12. M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations using cellular automata. Physica A, 1996. In press.

    Google Scholar 

  13. P. Wagner. Traffic simulations using cellular automata: Comparison with reality. In D.E. Wolf, M. Schreckenberg, and A. Bachem, editors, Traffic and Granular Flow. World Scientific, Singapore, 1996.

    Google Scholar 

  14. P. Wagner, S. Krauss, and C. Gawron. A continuous limit of the Nagel-Schreckenberg model. Phys. Rev. E, 1996. Submitted.

    Google Scholar 

  15. D.W. Heermann. Computer simulation methods in theoretical physics. Springer, Heidelberg, 1986.

    Google Scholar 

  16. D. Stauffer. Computer simulations of cellular automata. J. Phys. A, 24:909–927, 1991.

    Google Scholar 

  17. K. Nagel and A. Schleicher. Microscopic traffic modeling on parallel high performance computers. Parallel Computing, 20:125–146, 1994.

    Google Scholar 

  18. N. Ito. Non-equilibrium critical relaxation and interface energy of the Ising model. Physica A, 1:196, 93.

    Google Scholar 

  19. M. Rickert, P. Wagner, and Ch. Gawron. Real-time traffic simulation of the German Autobahn Network. In Proceedings of the 4th PASA Workshop, 1996. In press.

    Google Scholar 

  20. M. Rickert. Estimating parallel efficiency of large-scale traffic simulations. In preparation, 1996.

    Google Scholar 

  21. M. Rickert and P. Wagner. Parallel real-time implementation of large-scale, route-plan-driven traffic simulation. Int.J.Mod.Phys.C, 1996. In press.

    Google Scholar 

  22. R. Lüling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative study. In 3rd IEEE Symposium On Parallel And Distributed Processing, pages 686–689, 1991.

    Google Scholar 

  23. M.W. Olesen. Personal communication.

    Google Scholar 

  24. D. Roberts. Personal communication.

    Google Scholar 

  25. C.L. Barrett. Personal communication.

    Google Scholar 

  26. T. Blanchard and T. Lake. Conservative spatial simulation. In A. Pave, editor, European Simulation Multiconference, page 515. The Society for Computer Simulation, Istanbul, 1993. See also other papers in the same proceedings.

    Google Scholar 

  27. C.L. Barrett, S. Eubank, K. Nagel, J. Riordan, and M. Wolinsky. Issues in the representation of traffic using multi-resolution cellular automata. LA-UR 95-2658, Los Alamos, 1995.

    Google Scholar 

  28. R. Wiedemann. Personal communication.

    Google Scholar 

  29. P. Wagner. Personal communication.

    Google Scholar 

  30. G.D.B. Cameron and C.I.D. Duncan. PARAMICS-Parallel microscopic simulation of road traffic. J.Supercomputing, 1996. In press.

    Google Scholar 

  31. C.I.D. Duncan. PARAMICS wide area microscopic simulation of ATT and traffic management. In J.I. Soliman and D. Roller, editors, Proceedings of the 28th International Symposium on Automotive Technology and Automation (ISATA), page 475. Automotive Automation Ltd, Croydon, England, 1995. Paper No. 95ATS044.

    Google Scholar 

  32. PARAMICS Web site, http://www.epcc.ed.ac.uk/epcc-projects/paramics/.

    Google Scholar 

  33. U.S.Department of Transportation, Federal Highway Administration. TRAF user reference guide, 1992. Publication No. FHWA-RD-92-060.

    Google Scholar 

  34. H.S. Mahmassani, R. Jayakrishnan, and R. Herman. Network traffic flow theory: Microscopic simulation experiments on supercomputers. Transpn. Res. A, 24A (2):149, 1990.

    Google Scholar 

  35. R. Wiedemann. Simulation des Straßenverkehrsflusses. Heft 8, Institut für Verkehrswesen der Universität Karlsruhe, 1974.

    Google Scholar 

  36. T. Benz. The microscopic traffic simulator AS (Autobahn Simulator). In A. Pave, editor, European Simulation Multiconference, page 486. The Society for Computer Simulation, Istanbul, 1993.

    Google Scholar 

  37. R. Wiedemann. Modelling of RTI-elements on multi-lane roads. In Advanced telematics in road transport, Proceedings of the DRIVE conference, volume 2. Elsevier, 1991.

    Google Scholar 

  38. R. Wiedemann. Simulation des Verkehrsablaufs — Beschreibung des Staus. In Beiträge zur Theorie des Straβenverkehrs. Forschungsgesellschaft für Straßen-und Verkehrswesen, Köln, 1995.

    Google Scholar 

  39. M. Fellendorf. VISSIM. PTV system GmbH, Pforzheimer Str. 15, 76277 Karlsruhe, Germany.

    Google Scholar 

  40. W.P. Niedringhaus and P. Wang. IVHS traffic modeling using parallel computing. In IEEE — IEE Vehicle Navigation and Information Systems Conference VNIS '93, Ottawa, 1993.

    Google Scholar 

  41. SISTM. Transportation Research Laboratory, Old Wokingham Rd, Crowthorne, Berkshire RG11 6AU.

    Google Scholar 

  42. M. McDonald and M. A. Brackstone. Simulation of lane usage characteristics on 3 lane motorways. In Proceedings of the 27th International Symposium on Automotive Technology and Automation (ISATA), 1994.

    Google Scholar 

  43. M. Van Aerde, B. Hellinga, M. Baker, and H. Rakha. INTEGRATION: An overview of traffic simulation features. Transportation Research Records, in press.

    Google Scholar 

  44. M. Van Aerde et al. INTEGRATION (Release 2) User's Guide, 1995.

    Google Scholar 

  45. H.J. Payne. FREEFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record 722, 1979.

    Google Scholar 

  46. R.D. Kuehne and R. Beckschulte. Non-linearity and stochastics of unstable traffic flow. In C.F. Daganzo, editor, Proceedings of 12th Int. Symposium on the Theory of Traffic Flow and Transportation, page 367. Elsevier, Amsterdam, The Netherlands, 1993.

    Google Scholar 

  47. B.S. Kerner and P. Konhäuser. Cluster effect in initially homogenous traffic flow. Phys. Rev. E, 48(4):R2335–2338, 1993.

    Google Scholar 

  48. D. Helbing. Improved fluid-dynamic model for vehicular traffic. Phys. Rev. E, 51(4):3164, 1995.

    Google Scholar 

  49. C.F. Daganzo. Requiem for second-order fluid approximations fo traffic flow. Transpn. Res. B, 29B(4):277, 1995.

    Google Scholar 

  50. M. Kuwahara M and G.F. Newell. Queue evolution on freeways leading to a single core city during the morning peak. In Gartner N H and Wilson N H, editors, Transportation and traffic theory. Elsevier, 1987.

    Google Scholar 

  51. R.H.M. Emmerink, K.W. Axhausen, P. Nijkamp, and P. Rietveld. Effects of information in road transport networks with recurrent congestion. Transportation, 22:21, 1995.

    Google Scholar 

  52. H.P. Simão and W.B. Powell. Numerical methods for simulating transient, stochastic queueing networks. Transportation Science, 26:296, 1992.

    Google Scholar 

  53. T. Schwerdtfeger. Makroskopisches Simulationmodell für Schnellstraβennetze mit Berücksichtigung von Einzelfahrzeugen (DYNEMO). PhD thesis, TH Karlsruhe, 1987.

    Google Scholar 

  54. H.S. Mahmassani, T. Hu, and R. Jayakrishnan. Dynamic traffic assignment and simulation for advanced network informatics (DYNASMART). In N.H. Gartner and G. Improta, editors, Urban traffic networks: Dynamic flow modeling and control. Springer, Berlin/New York, 1995.

    Google Scholar 

  55. Transportation Systems Research Group, Queens' University and M. Van Aerde and Associates, Ltd. INTEGRATION: A model for simulating IVHS in integrated traffic networks, User's guide for model version 1.5e, 1994.

    Google Scholar 

  56. R. Jayakrishnan and H.S. Mahmassani. Dynamic simulation-assignment methodology to evaluate in-vehicle information strategies in urban traffic networks. In O. Balci, R.P. Sadowski, and R.E. Nance, editors, Proceedings of the 1990 Winter Simulation Conference, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagel, K., Rickert, M., Barrett, C.L. (1997). Large scale traffic simulations. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_131

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_131

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics