Skip to main content

Automated optimal design using CFD and high performance computing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Abstract

The advent of high performance computing has led to an increased role of CFD in automated optimal design, particularly in aeronautics. This paper presents a brief description of the optimization problem, strategies for its solution, algorithms for optimization, references to recent applications, impact of high performance computing and parallelization, and two examples of application to the design of high speed inlets.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Auneau, P. Garnero, and P. Duveau, “Design and Optimization Methods for Scramjet Inlets.” AIAA Paper 95-6017, 1995.

    Google Scholar 

  2. C. Hirsch, Numerical Computation of Internal and External Flows, Vols. I and II. New York: John Wiley & Sons, 1988.

    Google Scholar 

  3. J. Moré and S. Wright, Optimization Software Guide. Philadelphia: SIAM, 1993.

    Google Scholar 

  4. R. Schwartz, Learning Perl. Sebastopol, CA: O'Reilly & Associates, Inc., 1993.

    Google Scholar 

  5. M. Lores and B. Hinson, Transonic Design using Computational Aerodynamics, vol. 81 of Progress in Astronautics and Aeronautics, pp. 377–402. American Institute of Aeronautics and Astronautics, 1982.

    Google Scholar 

  6. P. Gill, W. Murray, and M. Wright, Practical Optimization. New York: Academic Press, 1981.

    Google Scholar 

  7. G. N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: With Applications. New York: McGraw-Hill, 1984.

    Google Scholar 

  8. A. Gelsey, “Intelligent Automated Quality Control for Computational Simulation,” Tech. Rep. CAP-TR-21, Department of Computer Science, Rutgers University, Aug. 1994.

    Google Scholar 

  9. M. Schwabacher, The Use of Artificial Intelligence to Improve the Numerical Optimization of Complex Engineering Designs. PhD thesis, Rutgers University, 1996.

    Google Scholar 

  10. S. Obayashi and T. Tsukahara, “Comparison of optimization algorithms for aerodynamic shape design.” AIAA Paper No. 96-2394-CP, 1996.

    Google Scholar 

  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing. Cambridge [England]; New York: Cambridge University Press, 2nd ed., 1992.

    Google Scholar 

  12. A. Jameson, “Aerodynamic Design via Control Theory,” Journal of Scientific Computation, vol. 3, pp. 33–260, 1988.

    Google Scholar 

  13. A. Jameson, “The Present Status, Challenges and Future Developments in Computational Fluid Dynamics,” in AGARD Conference on Progress and Challenges in CFD Methods and Algorithms, 1995.

    Google Scholar 

  14. O. Baysal and M. Eleshaky, “Aerodynamic Design Optimization using Sensitivity Analysis and Computational Fluid Dynamics.” AIAA Paper 91-0471, 1991.

    Google Scholar 

  15. S. Ta'asan, G. Kuruvila, and M. Salas, “Aerodynamic Design and Optimization in One Shot.” AIAA Paper 92-0005, 1992.

    Google Scholar 

  16. A. Iollo and M. Salas, “Contribution to the Optimal Shape Design of Two-dimensional Internal Flows with Embedded Shocks.” ICASE Report No. 95-20, 1995.

    Google Scholar 

  17. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller J. Chemical Physics, vol. 21, p. 1087, 1953.

    Google Scholar 

  18. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

    Google Scholar 

  19. K. Rasheed and A. Gelsey, “Adaptation of Genetic Algorithms for Continuous Design Space Search,” in Fourth International Conference on Artificial Intelligence in Design: Evolutionary Systems in Design Workshop, 1996.

    Google Scholar 

  20. P. Venkataraman, “Inverse Airfoil Design using Design Optimization.” AIAA Paper No. 96-2503-CP, 1996.

    Google Scholar 

  21. G. Farin, Curves and Surfaces for Computer Aided Geometric Design. Academic Press, 1993.

    Google Scholar 

  22. I. Fejtek, T. Barfoot, and G. Lo, “Turboprop Nacelle Optimization using Automated Surface and Grid Generation and Coarse-Grained Parallelization.” AIAA Paper 96-2504-CP, 1996.

    Google Scholar 

  23. H. Sobieczky and A. Seebass, “Supercritical Airfoil and Wing Design,” in Annual Review of Fluid Mechanics, vol. 16, pp. 337–363, 1984.

    Google Scholar 

  24. M. Siclari, W. V. Nostrand, and F. Austin, “The Design of Transonic Airfoil Sections for an Adaptive Wing Concept using a Stochastic Optimization Method.” AIAA Paper 96-0329, 1996.

    Google Scholar 

  25. M. Pandya and O. Baysal, “Gradient-Based Aerodynamic Shape Optimization using ADI Method for Large-Scale Problems.” AIAA Paper 96-0091, 1996.

    Google Scholar 

  26. A. Merchant and M. Drela, “Design and Analysis of Supercritical Suction Airfoils.” AIAA Paper No. 96-2397-CP, 1996.

    Google Scholar 

  27. S. Eyi, K. Lee, S. Rogers, and D. Kwak, “High-Lift Design Optimization using Navier-Stokes Equations,” Journal of Aircraft, vol. 33, pp. 499–504, May–June 1996.

    Google Scholar 

  28. A. Jameson, “Optimum Aerodynamic Design using CFD and Control Theory.” AIAA Paper 95-1729-CP, 1995.

    Google Scholar 

  29. N. Naik, S. Krist, R. Campbell, V. Vatsa, P. Buning, and L. Gea, “Inverse Design of Nacelles using Multi-Block Navier-Stokes Codes.” AIAA Paper 95-1920, 1995.

    Google Scholar 

  30. B. Berkowitz, “Information Age Intelligence,” Foreign Policy, no. 103, pp. 35–50, 1996.

    Google Scholar 

  31. D. Knight, “Parallel Computing in CFD,” in AGARD Conference on Progress and Challenges in CFD Methods and Algorithms, pp. 3-1 to 3-14, 1995.

    Google Scholar 

  32. A. Jameson and J. Alonso, “Automatic Aerodynamic Optimization on Distributed Memory Architectures.” AIAA Paper 96-0409, 1996.

    Google Scholar 

  33. R. Tanese, “Distributed Genetic Algorithms,” in Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 434–439, 1989.

    Google Scholar 

  34. P. Spiessens and B. Manderick, “A Massively Parallel Genetic Algorithm: Implementation and First Analysis,” in Proceedings of the 4th International Conference on Genetic Algorithms, pp. 279–286, 1991.

    Google Scholar 

  35. W. Seebaugh, R. Doran, and J. DeCarlo, “Detailed Investigation of Flowfields within Large-Scale Hypersonic Inlet Models,” Tech. Rep. NASA CR-114305, NASA Ames Research Center, April 1971.

    Google Scholar 

  36. A. Gnos, E. Watson, W. Seebaugh, R. Sanator, and J. DeCarlo, “Investigation of Flow Fields Within Large-Scale Hypersonic Inlet Models,” Technical Note D-7150, NASA, April 1973.

    Google Scholar 

  37. A. Gelsey, D. Knight, S. Gao, and M. Schwabacher, “NPARC Simulation and Redesign of the NASA P2 Hypersonic Inlet.” AIAA Paper 95-2760, 1995.

    Google Scholar 

  38. V. Shukla, A. Gelsey, M. Schwabacher, D. Smith, and D. Knight, “Automated Redesign of the NASA P8 Hypersonic Inlet Using Numerical Optimization.” AIAA Paper 96-2549, 1996.

    Google Scholar 

  39. A. Gelsey, “Intelligent Automated Quality Control for Computational Simulation,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM), vol. 9, pp. 387–400, November 1995.

    Google Scholar 

  40. A. Gelsey, M. Schwabacher, and D. Smith, “Using Modeling Knowledge to Guide Design Space Search,” in Artificial Intelligence in Design Conference, Kluwer Academic Publishers, June 1996. To appear.

    Google Scholar 

  41. J. Sirbaugh, C. Smith, C. Towne, G. Cooper, R. Jones, and G. Power, A Users Guide to NPARC Version 2.0, November 1994.

    Google Scholar 

  42. W. McGrory, D. Slack, M. Applebaum, and R. Walters, “GASP Version 2.2: The General Aerodynamic Simulation Program.” Aerosoft, Inc, 1993.

    Google Scholar 

  43. K.-Y. Chien, “Predictions of Channel and Boundary Layer Flows with a Low Reynolds Number Turbulence Model,” AIAA Journal, vol. 20, pp. 33–38, January 1982.

    Google Scholar 

  44. D. D. Knight, “Numerical Simulation of Realistic High-Speed Inlets Using the Navier-Stokes Equations,” AIAA Journal, vol. 15, no. 11, pp. 1583–1589, 1977.

    Google Scholar 

  45. W. F. Ng, K. Ajmani, and A. Taylor, “Turbulence Modeling in a Hypersonic Inlet,” AIAA Journal, vol. 27, no. 10, pp. 1354–1360, 1989.

    Google Scholar 

  46. K. Kapoor, B. H. Anderson, and R. J. Shaw, “Comparative Study of Turbulence Models in Predicting Hypersonic Inlet Flows,” 1992. AIAA Paper 92-3098.

    Google Scholar 

  47. C. Lawrence, J. Zhou, and A. Tits, “Users Guide for CFSQP Version 2.3: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints,” Tech. Rep. TR-94-16r1, Institute for Systems Research, University of Maryland, November 1994.

    Google Scholar 

  48. G. Zha, D. Smith, M. Schwabacher, K. Rasheed, A. Gelsey, D. Knight, and M. Haas, “High Performance Supersonic Missile Inlet Design Using Automated Optimization.” AIAA Paper 96-4142, 1996.

    Google Scholar 

  49. M. Haas, R. Elmquist, and D. Sobel, “NAWC Inlet Design and Analysis (NIDA) Code,” Tech. Rep. UTRC Report R92-970037-1, United Technologies Research Center, April 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knight, D.D. (1997). Automated optimal design using CFD and high performance computing. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_121

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_121

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics