Advertisement

Synthesis of proof procedures for default reasoning

  • Phan Minh Dung
  • Robert A. Kowalski
  • Francesca Toni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1207)

Abstract

We apply logic program development technology to define abstract proof procedures, in the form of logic programs, for computing the admissibility semantics for default reasoning proposed in [2].

The proof procedures are derived from a formal specification. The derivation guarantees the soundness of the proof procedures. The completeness of the proof procedures is shown by employing a technique of symbolic execution of logic programs to compute (an instance of) a relation implied by the specification.

Keywords

Logic Program Logic Programming Symbolic Execution Default Logic Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework for non-monotonic reasoning. Proceedings of the 2nd International Workshop on Logic Programming and Non-monotonic Reasoning, Lisbon, Portugal (1993), MIT Press (L. M. Pereira and A. Nerode, eds) 171–189Google Scholar
  2. 2.
    A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-theoretic framework for default reasoning. To appear in Artificial Intelligence, Elsevier.Google Scholar
  3. 3.
    Y. Deville, K.-K. Lau, Logic program synthesis. Journal of Logic Programming 19/20 (1994), Elsevier, 321–350Google Scholar
  4. 4.
    P. M. Dung, Negation as hypothesis: an abductive foundation for logic programming. Proceedings of the 8th International Conference on Logic Programming, Paris, France (1991), MIT Press (K. Furukawa, ed.) 3–17Google Scholar
  5. 5.
    P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning and logic programming. Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France (1993), Morgan Kaufmann (R. Bajcsy, ed.) 852–857Google Scholar
  6. 6.
    P. M. Dung, R. A. Kowalski, F. Toni, Argumentation-theoretic proof procedures for non-monotonic reasoning. Logic Programming Section Technical Report, Department of Computing, Imperial College, London (1996)Google Scholar
  7. 7.
    K. Eshghi, R.A. Kowalski, Abduction through deduction. Logic Programming Section Technical Report, Department of Computing, Imperial College, London (1988)Google Scholar
  8. 8.
    K. Eshghi, R. A. Kowalski, Abduction compared with negation as failure. Proceedings of the 6th International Conference on Logic Programming, Lisbon, Portugal (1989), MIT Press (G. Levi and M. Martelli, eds) 234–254Google Scholar
  9. 9.
    M. Gelfond, V. Lifschitz, The stable model semantics for logic programming. Proceedings of the 5th International Conference on Logic Programming, Washington, Seattle (1988), MIT Press (K. Bowen and R. A. Kowalski, eds) 1070–1080Google Scholar
  10. 10.
    A. C. Kakas, P. Mancarella. Preferred extensions are partial stable models. Journal of Logic Programming 14(3,4) (1993), Elsevier, 341–348Google Scholar
  11. 11.
    A. C. Kakas, P. Mancarella, P.M. Dung, The Acceptability Semantics for Logic Programs. Proceedings of the 11th International Conference on Logic Programming, Santa Margherita Ligure, Italy (1994), MIT Press (P. van Hentenryck, ed.) 504–519Google Scholar
  12. 12.
    R.A. Kowalski. Logic for problem solving. Elsevier, New York (1979)Google Scholar
  13. 13.
    J. McCarthy, Circumscription — a form of non-monotonic reasoning. Artificial Intelligence 13 (1980), Elsevier, 27–39Google Scholar
  14. 14.
    D. McDermott, Nonmonotonic logic II: non-monotonic modal theories. Journal of ACM 29(1) (1982) 33–57Google Scholar
  15. 15.
    R. Moore, Semantical considerations on non-monotonic logic. Artificial Intelligence 25 (1985), Elsevier, 75–94Google Scholar
  16. 16.
    R. Paige, S. Koenig, Finite differencing of computable expressions. ACM Transactions on Programming Languages Systems 4(3) (1982), ACM Press, 402–454Google Scholar
  17. 17.
    A. Pettorossi, M. Proietti, Transformation of logic programs. Journal of Logic Programming 19/20 (1994), Elsevier, 261–320Google Scholar
  18. 18.
    D. Poole, A logical framework for default reasoning. Artificial Intelligence 36 (1988), Elsevier, 27–47Google Scholar
  19. 19.
    R. Reiter, A logic for default reasoning. Artificial Intelligence 13 (1980), Elsevier, 81–132Google Scholar
  20. 20.
    D. Saccà, C. Zaniolo, Stable model semantics and non-determinism for logic programs with negation. Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Nashville, Tennessee (1990) ACM Press, 205–217Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Phan Minh Dung
    • 1
  • Robert A. Kowalski
    • 2
  • Francesca Toni
    • 3
  1. 1.Division of Computer ScienceAsian Institute of TechnologyBangkokThailand
  2. 2.Department of ComputingImperial CollegeLondonUK
  3. 3.Department of Electrical and Computing Engineering, Division of Computer ScienceNational Technical University of AthensZographou, AthensGreece

Personalised recommendations