Advertisement

Database issues for data visualization: Scientific data modeling

  • William L. Hibbard
  • David T. Kao
  • Andreas Wierse
Workshop Subgroup Reports
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1183)

Abstract

Visualization is one of the most important activities involved in modern exploratory data analysis. Traditional database data models, in their current forms, are inadequate to satisfy the data modeling need of exploratory data analysis in general and visualization in particular. A comprehensive scientific data model is required for seamless integration of various components of a scientific database system which includes visualization, data analysis, and data management.

This paper identifies the criteria of a comprehensive scientific data model and discusses the implementation aspect of such a model based on existing DBMS. Recent research in scientific data modeling and various issues raised in the workshop subgroup are also presented.

Keywords

Data Model Database System Scientific Data Data Visualization Exploratory Data Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCH+94]
    R. D. Bergeron, W. Cody, W. Hibbard, D. T. Kao, K. D. Miceli, L. A. Treinish, and S. Walther. Database Issues for Data Visualization: Developing a Data Model. In J. P. Lee and G. G. Grinstein, editors, Database Issues for Data Visualization, number 871 in Lecture Notes in Computer Science, pages 3–15. Springer-Verlag, 1994.Google Scholar
  2. [BG89]
    R. D. Bergeron and G. G. Grinstein. A Reference Model for the Visualization of Multi-dimensional Data. In Proceedings of Eurographics '89, Hamburg, F. R. G., September 1989. North Holland Publishing Company.Google Scholar
  3. [CIE78]
    CIE. CIE Recommendations on Uniform Color Spaces — Color Difference Equations, Psychometric Color Terms. Bureau Central de la CIE, Paris, France, 1978. CIE Publication No. 15 (E-13.1) 1971 / (TC-1.3) 1978, Supplement No. 2, 9–12.Google Scholar
  4. [EEC92]
    EECS Department, University of California, Berkeley, California. The POSTGRES 4.0 References, 1992.Google Scholar
  5. [Gia93]
    P. Di Gianantonio. A Functional Approach to Computability on Real Numbers. PhD thesis, University of Pisa, 1993.Google Scholar
  6. [HDP94]
    W. L. Hibbard, C. R. Dyer, and B. E. Paul. A Lattice Model for Data Display. In Proceedings of IEEE Visualization '94, Washington D.C., October 1994.Google Scholar
  7. [Hib95]
    W. L. Hibbard. Visualizing Scientific Computations: A System Based on Lattice Structured Data and Display Models. PhD thesis, Department of Computer Science, University of Wisconsin, Madison, 1995. Tech Report 1226.Google Scholar
  8. [HLC91]
    R. B. Haber, B. Lucas, and N. Collins. A Data Model for Scientific Visualization with Provisions for Regular and Irregular Grids. In Proceedings of IEEE Visualization '91, San Diego, California, October 1991.Google Scholar
  9. [KBS94]
    D. T. Kao, R. D. Bergeron, and T. M. Sparr. An Extended Schema Model for Scientific Data. In J. P. Lee and G. G. Grinstein, editors, Database Issues for Data Visualization, number 871 in Lecture Notes in Computer Science, pages 69–82. Springer-Verlag, 1994.Google Scholar
  10. [LR95]
    R. Li and P. K. Robertson. Towards Perceptual Control of Markov Randon Field Textures. In G. G. Grinstein and H. Levkowitz, editors, Perceptual Issues in Visualization, pages 83–94. Springer-Verlag, 1995.Google Scholar
  11. [ML70]
    P. Martin-Löf. Notes on Constructive Mathematics. Almqvist and Wiksell, Stockholm, Sweden, 1970.Google Scholar
  12. [RO88]
    P. K. Robertson and J. F. O'Callaghan. The Application of Perceptual Color Spaces to the Display of Remotely Sensed Imagery. IEEE Transactions on Geoscience and Remote Sensing, 26(1):49–59, 1988.Google Scholar
  13. [Sco70]
    D. S. Scott. Outline of a Mathematical Theory of Computation. In 4th Annual Princeton Conference on Information Sciences and Systems, pages 169–176, 1970.Google Scholar
  14. [Smy92]
    M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 1, Background: Mathematical Structures, Oxford Science Publication. Clarendon Press, Oxford, England, 1992.Google Scholar
  15. [Sün94]
    P. Sünderhauf. Discrete Approximation of Spaces: A Uniform Approach to Topological Structured Datatypes and their Function Spaces. PhD thesis, Technische Hochschule Darmstadt, 1994.Google Scholar
  16. [Tuk77]
    J. D. Tukey. Exploratory Data Analysis. Addison-Wesley Publishing Company, Reading, Massachusetts, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • William L. Hibbard
    • 1
  • David T. Kao
    • 2
  • Andreas Wierse
    • 3
  1. 1.University of WisconsinMadisonUSA
  2. 2.University of New HampshireDurhamUSA
  3. 3.University of StuttgartGermany

Personalised recommendations