Inter-pixel Euclidean paths for image analysis

  • Jean-Pierre Braquelaire
  • Luc Brun
  • Anne Vialard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)


Inter-pixel boundaries provide a robust and consistent description of segmented images but have a poor visual aspect, especially when being enlarged. Approximation curve are sometimes used to smooth discrete boundaries but they do not provide error free reconstruction and may be uneasy to use in this context. In this paper we show the advantages of using Euclidean paths in order to smooth inter-pixel boundaries and we demonstrate the interest of inter-pixel Euclidean paths for the purpose of image segmentation and analysis.


Boundary Point Segmented Image Boundary Plane Pixel Boundary Discrete Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AAF95]
    E. Ahronovitz, J.P Aubert, and C. Fiorio. The star-topology: a topology for image analysis. In In 5th Discrete Geometry for Computer Imagery, Proceedings, pages 107–116, September 1995.Google Scholar
  2. [BB96]
    Jean-Pierre Braquelaire and Luc Brun. Image segmentation with topological maps and inter-pixel representation. Technical report, LaBRI, Université Bordeaux I, 1996. submited.Google Scholar
  3. [BD91]
    Jean-Pierre Braquelaire and Jean-Philippe Domenger. Intersection of discrete contours. In Proc. of Compugraphics'91, pages 14–23, 1991.Google Scholar
  4. [BD96a]
    Jean-Pierre Braquelaire and Jean-Philippe Domenger. Representation of segmented images with discrete maps. Technical report, LaBRI, Université Bordeaux I, 1996. submited.Google Scholar
  5. [BD96b]
    Luc Brun and Jean-Philippe Domenger. Segmentation. Technical report, LaBRI, Université Bordeaux I, 1996. submited.Google Scholar
  6. [BF70]
    C.R. Brice and C.L. Fennema. Scene analysis using regions. Artificial intelligence, 1:205–226, 1970.Google Scholar
  7. [Bie90]
    H. Bieri. Hyperimages — an alternative to the conventional digital images. In Eurographics'90 proceedings, pages 341–352, 1990.Google Scholar
  8. [BV95]
    Jean-Pierre Braquelaire and Anne Vialard. Euclidean paths: a new representation of boundaries of discrete regions. Technical Report 1088-95, LaBRI, Université Bordeaux I, 1995. submited.Google Scholar
  9. [CL90]
    Long-Wen Chang and Kuen-Long Leu. A fast algorithm for the restoration of images based on chain codes descriptions and its applications. Computer Vision, Graphics, and Image Processing, 50:296–307, 1990.Google Scholar
  10. [Cor75]
    Robert Cori. Un code pour les graphes planaires et ses applications. Thèse d'état de l'université Paris VII, and Astŕisque 27, 1973 and 1975.Google Scholar
  11. [Dom92]
    Jean-Philippe Domenger. Conception et implementation du noyau graphique d'un environnement 2D 1/2 d'édition d'images discrètes. PhD thesis, Univ. Bordeaux I, avril 1992.Google Scholar
  12. [DR92]
    I. Debled and J.P. Reveilles. Un algorithme linéaire de polygonalisation des courbes discrètes. In Collogue Géométrie discrète en imagerie, pages 243–253, Grenoble, 1992.Google Scholar
  13. [Fio95]
    Christophe Fiorio. Approche interpixel en analyse d'images: une topologie et des algorithmes de segmentation. Thèse de doctorat, Université Montpellier II, 24 novembre 1995.Google Scholar
  14. [Fra91]
    Jean Françon. Topologie de khalimsky et kovalevsky et algorithmes graphiques. In First Colloquium on Discrete Geometry in Computer Imagery, Strasbourg, September 1991.Google Scholar
  15. [Fra95]
    Jean Françon. Topologie de khalimski-kovalevsky et algorithmique graphique. TSI, 14(10):119–121, 1995.Google Scholar
  16. [Fre61]
    H. Freeman. On the encoding of arbitrary geometric configurations. IRE Trans., EC-10(2):260–268, 1961.Google Scholar
  17. [Fre74]
    H. Freeman. Computer processing of line drawing images. ACM Comput. Surveys, 6(1):57–98, 1974.Google Scholar
  18. [GVT91]
    M. Gangnet and J.M. Van Thong. Robust boolean operations on 2d paths. In Proc. of COMPUGRAPHICS'91, pages 434–444, 1991, 1991.Google Scholar
  19. [KKM90a]
    E. Khalimsky, R. Kopperman, and P.R. Meyer. Boundaries in digital planes. Journal of applied Math. and Stocastic Analysis, 3:27–55, 1990.Google Scholar
  20. [KKM90b]
    E. Khalimsky, R. Kopperman, and P.R. Meyer. Computer graphics and connected topologies on finite ordered sets. Topology and its Applications, 36:1–17, 1990.Google Scholar
  21. [Kov89]
    V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing, 46:141–161, 1989.Google Scholar
  22. [KR89]
    T.Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing, 48:357–393, 1989.Google Scholar
  23. [Mer73]
    R.D. Merrill. Representation of contours and regions for efficient computer search. Communications of the ACM, 16(2):69–82, 1973.Google Scholar
  24. [Mor69]
    P. Morse. Concepts of use in contour map processing. Communications of the ACM, 12(3):147–152, 1969.Google Scholar
  25. [Pav82]
    T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Sci., Washington, 1982.Google Scholar
  26. [Rev91]
    J.P. Reveilles. Géométrie discrète, Calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, 1991.Google Scholar
  27. [RK82]
    A. Rosenfeld and A.C. Kak. Digital Picture Processing, volume 2. Academic Press, 1982.Google Scholar
  28. [Via96]
    Anne Vialard. Geometrical parameters extraction from discrete paths. Technical report, LaBRI, Université Bordeaux I, 1996. submited.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jean-Pierre Braquelaire
    • 1
    • 2
  • Luc Brun
    • 1
    • 2
  • Anne Vialard
    • 1
    • 2
  1. 1.Laboratoire Bordelais de Recherche en InformatiqueUnité de RechercheFrance
  2. 2.LaBRIUniversité Bordeaux ITalence CedexFrance

Personalised recommendations