Skip to main content

Learning object representations from lighting variations

  • Appearance-Based Representations
  • Conference paper
  • First Online:
Object Representation in Computer Vision II (ORCV 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1144))

Included in the following conference series:

Abstract

Realistic representation of objects requires models which can synthesize the image of an object under all possible viewing conditions. We propose to learn these models from examples. Methods for learning surface geometry and albedo from one or more images under fixed posed and varying lighting conditions are described. Singular value decomposition (SVD) is used to determine shape, albedo, and lighting conditions up to an unknown 3×3 matrix, which is sufficient for recognition. The use of class-specific knowledge and the integrability constraint to determine this matrix is explored. We show that when the integrability constraint is applied to objects with varying albedo it leads to an ambiguity in depth estimation similar to the bas relief ambiguity. The integrability constraint, however, is useful for resolving ambiguities which arise in current photometric theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Atick, P.A. Griffin and A. N. Redlich. Statistical Approach to Shape from Shading. Preprint. Computational Neuroscience Laboratory. The Rockefeller University. New York. NY. 1995.

    Google Scholar 

  2. P. Belhumeur and D. Kriegman. “What is the set of images of an object under all lighting conditions?”. In Proceedings of Conference on Computer Vision and Pattern Recognition. San Francisco. CA. 1996.

    Google Scholar 

  3. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. “Eignefaces vs. Fisherfaces: Recognition using Class Specific Linear Projection”. In Proceedings of ECCV. Cambridge, England. 1996.

    Google Scholar 

  4. A. Lanitis, C.J. Taylor and T.F. Cootes. A Unified approach to Coding and Interpreting Face Images. In Proceedings of ICCV. Boston. MA. 1995.

    Google Scholar 

  5. R. Epstein, P.W. Hallinan and A.L. Yuille. “5 ± Eigenimages Suffice: An Empirical Investigation of Low-Dimensional Lighting Models”. In Proceedings of IEEE WORKSHOP ON PHYSICS-BASED MODELING IN COMPUTER VISION. 1995.

    Google Scholar 

  6. R. Epstein and A.L. Yuille. In preparation. 1996.

    Google Scholar 

  7. R.A. Fisher. The use of multiple measures in taxonomic problems. Ann. Eugenics, 7: pp 179–188. 1936.

    Google Scholar 

  8. U. Grenander, Y. Chow, and D.M. Keenan. Hands: A Pattern Theroetic Study of Biological Shapes. New York: Springer-Verlag. 1991.

    Google Scholar 

  9. W.E.L. Grimson. Object Recognition by Computer. MIT Press. Cambrige, MA. 1990.

    Google Scholar 

  10. G. Hager and P.N. Belhumeur. In Proc ECCV. Cambridge, England. 1996.

    Google Scholar 

  11. P.W. Hallinan. “A low-dimensional lighting representation of human faces for arbitrary lighting conditions”. In. Proc. IEEE Conf. on Comp. Vision and Patt. Recog., pp 995–999. 1994.

    Google Scholar 

  12. P.W. Hallinan. A Deformable Model for Face Recognition under Arbitrary Lighting Conditions. PhD Thesis. Division of Applied Sciences. Harvard University. 1995.

    Google Scholar 

  13. K. Hayakawa. “Photometric Stereo under a light source with arbitrary motion”. Journal of the Optical Society of America A, 11(11). 1994.

    Google Scholar 

  14. B.K.P. Horn. Computer Vision. MIT Press, Cambridge, Mass. 1986.

    Google Scholar 

  15. B.K.P. Horn and M. J. Brooks, Eds. Shape from Shading. Cambridge MA, MIT Press, 1989.

    Google Scholar 

  16. P.J. Huber. Robust Statistics. John Wiley and Sons. New York. 1980.

    Google Scholar 

  17. Y. Iwahori, R.J. Woodham and A Bagheri “Principal Components Analysis and Neural Network Implementation of Photometric Stereo”. In Proceedings of the IEEE Workshop on Physics-Based Modeling in Computer Vision. pp117–125 (1995).

    Google Scholar 

  18. J.J. Koenderink and A.J. van Doorn. “The internal representation of solid shape with respect to vision”. Biological Cybernetics, Vol. 32. pp 211–216. 1979.

    PubMed  Google Scholar 

  19. J.J. Koenderink, A.J. van Doorn, A.M.L. Kappers ”Surface Perception in Pictures”. Perception and Psychophysics, vol 52, pp487–496. 1992.

    PubMed  Google Scholar 

  20. Y. Moses, Y. Adini, and S. Ullman. “Face Recognition: The problem of compensating for changes in the illumination direction”. In European Conf. on Comp. Vision., pp 286–296. 1994.

    Google Scholar 

  21. Y. Moses, S. Ullman, and S. Edelman. “Generalization to Novel Images in Upright and Inverted Faces”. Preprint. Dept. of Applied Mathematics and Computer Science. The Weizmann Institute of Science. Israel. 1995.

    Google Scholar 

  22. J.L. Mundy and A. Zisserman (eds.) Geometric Invariance in Computer Vision. MIT Press. Cambridge, MA. 1992.

    Google Scholar 

  23. H. Murase and S. Nayar. “Visual learning and recognition of 3-D objects from appearance”. Int. Journal of Computer Vision. 14. pp 5–24. 1995.

    Google Scholar 

  24. S.K. Nayar, K. Ikeuchi and T. Kanade ”Surface reflections: physical and geometric perspectives” IEEE trans. on Pattern Analysis and Machine Intelligence, vol 13 p611–634. 1991.

    Google Scholar 

  25. A. Shashua. Geometry and Photometry in 3D Visual Recognition. PhD Thesis. MIT. 1992.

    Google Scholar 

  26. W. Silver. Determining Shape and Reflectance Using Multiple Images. PhD Thesis. MIT, Cambridge, MA. 1980.

    Google Scholar 

  27. M. Turk and A. Pentland. “Faces recognition using eigenfaces”. In Proceedings of IEEE Conf. on Comp. Vision and Pattern Recognition. pp 586–591. 1991.

    Google Scholar 

  28. R. Woodham. “Analyszing Images of Curved Surfaces”. Artificial Intelligence, 17, pp 117–140. 1981.

    Google Scholar 

  29. A.L. Yuille, M. Ferraro, and T. Zhang. “Shape from Warping”. Submitted to CVGIP. 1996.

    Google Scholar 

  30. A.L. Yuille. “A Mathematical Analysis of SVD applied to lighting estimation and image warping”. Preprint. Smith-Kettlewell Eye Research Institute. San Francisco. 1996.

    Google Scholar 

  31. Song Chun Zhu and A.L. Yuille. “A Flexible Object Recognition and Modelling System”. In Proceedings of the International Conference on Computer Vision. Boston 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean Ponce Andrew Zisserman Martial Hebert

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Epstein, R., Yuille, A.L., Belhumeur, P.N. (1996). Learning object representations from lighting variations. In: Ponce, J., Zisserman, A., Hebert, M. (eds) Object Representation in Computer Vision II. ORCV 1996. Lecture Notes in Computer Science, vol 1144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61750-7_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-61750-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61750-1

  • Online ISBN: 978-3-540-70673-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics