Advertisement

Towards modelling the topology of homogeneous manifolds by means of symbolic computation

  • Michael Joswig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1138)

Abstract

We describe the implementation of a program which semidecides whether a Lie group with certain specified properties can possibly act (continuously and transitively) on a given manifold or not. As a criterion the exactness of the induced homotopy sequence is used.

Keywords

Abelian Group Topological Space Homotopy Group Algebraic Topology Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bödi and M. Joswig. Tables for an effective enumeration of real representations of quasi-simple Lie groups. Sem. Sophus Lie, 3(2):239–253, 1993.Google Scholar
  2. 2.
    A. Borel et al. Seminar on transformation groups Ann. of Math. Stud. 46, Princeton Univ. Press, 1960.Google Scholar
  3. 3.
    R. Bott. An application of Morse theory to the topology of Lie groups. Bull. Soc. Math. France, 84:353–411, 1956.Google Scholar
  4. 4.
    N. Bourbaki. Groupes et algèbres de Lie, Chap. 4, 5, 6. Hermann, Paris, 1968.Google Scholar
  5. 5.
    N. Bourbaki. Groupes et algèbres de Lie, Chap. 7, 8. Hermann, Paris, 1975.Google Scholar
  6. 6.
    N. Bourbaki. Groupes et algèbres de Lie, Chap. 9, Groupes de Lie réels compactes. Masson, Paris, 1982.Google Scholar
  7. 7.
    N. Bourbaki. Commutative Algebra, Chap. 1–7. Springer, Heidelberg-Berlin-New York, 1989.Google Scholar
  8. 8.
    N. Bourbaki. Lie groups and Lie algebras, Chap. 1–3. Springer, Heidelberg-Berlin-New York, 1989.Google Scholar
  9. 9.
    G.E. Bredon. Topology and geometry. Springer, Heidelberg-Berlin-New York, 1993.Google Scholar
  10. 10.
    W. Browder. Torsion in h-spaces. Ann. Math. (2), 74:24–51, 1961.Google Scholar
  11. 11.
    R. Engelking. Dimension theory. North-Holland, Amsterdam, 1978.Google Scholar
  12. 12.
    M.J. Fischer and M.O. Rabin. Super exponential complexity of Presburger's arithmetic. SIAM-AMS Proceedings, 7:27–41, 1974.Google Scholar
  13. 13.
    V.V. Gorbatsevich and A.L. Onishchik. Transformation Lie groups. Itogi Nauki i Tekhniki: Sovremennye Problemy Mat.: Fundamental'nye Napravleniya, 20:5–101, 1988.Google Scholar
  14. 14.
    S. Helgason. Differential geometry, Lie groups and symmetric spaces. Academic Press, New York, 1978.Google Scholar
  15. 15.
    J. Hilgert and K.-H. Neeb. Lie-Gruppen und Lie-Algebren. Vieweg, Braunschweig. 1991.Google Scholar
  16. 16.
    K.H. Hofmann and Ch. Terp. Compact subgroups of Lie groups and locally compact groups. Proc. Amer. Math. Soc., 120:623–634, 1994.Google Scholar
  17. 17.
    D.R. Hughes and F.C. Piper. Projective planes. Springer, Heidelberg-Berlin-New York, 1973.Google Scholar
  18. 18.
    M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser. LiE — A package for Lie group computations. Computer Algebra Nederland, Amsterdam, 1992.Google Scholar
  19. 19.
    K. Iwasawa. On some types of topological groups. Ann. Math. (2), 50:507–558, 1949.Google Scholar
  20. 20.
    M. Joswig. Generalized polygons with highly transitive collineation groups. Geom. Ded., 58:91–100, 1995.Google Scholar
  21. 21.
    M. Joswig. Deciding the exactness of sequences of finitely generated abelian groups. Preprint.Google Scholar
  22. 22.
    L. Kramer. Compact polygons. Phd thesis, Univ. Tübingen, 1994.Google Scholar
  23. 23.
    R. Löwen. Homogeneous compact projective planes. J. Reine Angew. Math., 321:217–220, 1981.Google Scholar
  24. 24.
    M. Mimura. Homotopy theory of Lie groups. Chap. 9 of I.M. James (ed.): Handbook of algebraic topology, Amsterdam, 1995.Google Scholar
  25. 25.
    A. Mostowski. On direct products of theories. J. Symbolic Logic, 17:1–20, 1952.Google Scholar
  26. 26.
    R.V. Moody, J. Patera, and D.W. Rand <Rand@ERE.UMontreal.CA>. simpLie — Macintosh software for simple Lie algebras. Internet WWW page, at URL: <http://www.crm.umontreal.ca/∼rand/simpLie.html>, (version of June 13, 1995).Google Scholar
  27. 27.
    A.L. Onishchik. Topology of transitive transformation groups. Barth, Leipzig-Berlin-Heidelberg, 1994.Google Scholar
  28. 28.
    L.C. Paulson. ML for the working programmer. Cambridge Univ. Press, 1991.Google Scholar
  29. 29.
    M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. pages 92–101. Comptes rendus du 1er Congrès des Mathématiciens des Pays Slaves, Warszawa, 1929.Google Scholar
  30. 30.
    J.J. Rotman. An introduction to algebraic topology. Springer, Heidelberg-Berlin-New York, 1988.Google Scholar
  31. 31.
    H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel. Compact projective planes. De Gruyter, Berlin, 1995.Google Scholar
  32. 32.
    T. Skolem. Über gewisse Satzfunktionen in der Arithmetik. Skrifter utgit av Videnskapsselskapet i Kristiania, I. klasse, no. 7, 1930.Google Scholar
  33. 33.
    E.H. Spanier. Algebraic topology. McGraw-Hill, New York, 1966.Google Scholar
  34. 34.
    Standard ML of New Jersey. Copyright by AT&T Bell Laboratories. Version 109, 1996.Google Scholar
  35. 35.
    H. Van Maldeghem. Generalized polygons — a geometric approach. To appear.Google Scholar
  36. 36.
    F.W. Warner. Foundations of differentiable manifolds and Lie groups. Springer, Heidelberg-Berlin-New York, 1983. Corrected reprint of the 1971 edition.Google Scholar
  37. 37.
    H. Zassenhaus. The theory of groups. Chelsea, New York, 1949.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michael Joswig
    • 1
  1. 1.RISC-LinzJohannes-Kepler-Universität LinzLinzAustria

Personalised recommendations