Advertisement

Interactive Theorem Proving and finite projective planes

  • Johannes UeberbergEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1138)

Keywords

Singular Point Free Parameter Projective Plane Linear Constraint Tangent Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Beutelspacher: Projective Planes, in F. Buekenhout (ed.): Handbook of Incidence Geometry, Elsevier Amsterdam (1995), 107–137.Google Scholar
  2. 2.
    A. Beutelspacher, J. Ueberberg: Symbolic Incidence Geometry — A proposal for doing Geometry with a Computer, SIGSAM Bull.27, No. 2 (1993), 19–29 and No. 3 (1993), 9–24.Google Scholar
  3. 3.
    P. Dembowski: Finite Geometries, Springer Berlin, Heidelberg (1968).Google Scholar
  4. 4.
    D. Hughes, F. Piper: Projective Planes, Springer Berlin, Heidelberg (1973).Google Scholar
  5. 5.
    J. W. P. Hirschfeld: Projective Geometries over Finite Fields, Oxford University Press (1979).Google Scholar
  6. 6.
    J. A. Thas: Projective Geometry over a Finite Field, in F. Buekenhout (ed.): Handbook of Incidence Geometry, Elsevier Amsterdam (1995), 295–349.Google Scholar
  7. 7.
    J. Ueberberg: On regular {ν, n}-arcs in Finite Projective Spaces, J. Comb. Designs, 1, No. 6 (1993), 395–409.Google Scholar
  8. 8.
    J. Ueberberg: Interactive Theorem Proving and Computer Algebra, in J. Calmet, J. A. Campbell (eds.): Integrating Symbolic Mathematical Computing and Artificial Intelligence, Springer Lecture Notes Comp. Science 958 (1995), 1–9.Google Scholar
  9. 9.
    J. Ueberberg: Interactive Theorem Proving in Symbolic Incidence Geometry, submitted (1995).Google Scholar
  10. 10.
    D. Wang: Geometry Theorem Proving with Existing Technology, RISC-Linz Report Series No. 93-40.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  1. 1.Mathematisches InstitutGiessen

Personalised recommendations