A new approach on solving 3-satisfiability

  • Robert Rodošek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1138)


In this paper we describe and analyse an algorithm for solving the 3-satisfiability problem. If clauses are regarded as constraints of Constraint Satisfaction Problems, then every clause presents a constraint with a special property, namely subquadrangle. We show that the algorithm on subquadrangles guarantees a solution in time less than O(1.476n), which improves the current well-known 3-satisfiability algorithms. Tests have shown the number of steps to be significantly smaller also in the average compared with the other algorithms.


Constraint Satisfaction Problem Linear Complementarity Problem Binary Decision Satisfiability Problem Pairwise Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beigel, R., Eppstein, D.: 3-Coloring in Time O(1.3446n): A No-MIS Algorithm. In Technical Report ECCC TR95-33 (1995)Google Scholar
  2. 2.
    Biggs, N. L.: Discrete Mathematics. Oxford Science Publications, New York (1994)Google Scholar
  3. 3.
    Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the Association for Computing Machinery 7(3) (1960) 201–215Google Scholar
  4. 4.
    Fikes, R. E.: REF-ARF: A System for Solving Problems Stated as Procedures. Artificial Intelligence 1 (1970) 27–120CrossRefGoogle Scholar
  5. 5.
    Garey, M. R., Johnson, D. S.: Computers and Intractability. W. H. Freeman and Company, San Francisco (1979)Google Scholar
  6. 6.
    Haken, A.: The Intractability of Resolution. Theoretical Computer Science 39 (1985) 297–308CrossRefGoogle Scholar
  7. 7.
    Jeavons, P. G.: The Expressive Power of Constraint Networks. In Technical Report CSD-TR-640, Royal Holloway and Bedford New College, University of London (1990)Google Scholar
  8. 8.
    Lawler, E. L.: A Note on the Complexity of the Chromatic Number Problem. Inf. Proc. Lett. 5 (1976) 66–67CrossRefGoogle Scholar
  9. 9.
    Mayer, J., Mitterreiter, I., Radermacher, F. J.: Running Time Experiments on some Algorithms for Solving Propositional Satisfiability Problems. In Technical Report, Forschungsinstitut für anwendungsorientierte Wissensverarbeitung, Ulm (1994)Google Scholar
  10. 10.
    Monien, B., Speckenmeyer, E.: Solving Satisfiability in less than 2n Steps. Discrete Appl. Math. 10 (1985) 287–295CrossRefGoogle Scholar
  11. 11.
    Rodošek, R.: Combining Heuristics for Constraint Satisfaction Problems. Proceedings of the CP'95 Workshop on Studying and Solving Really Hard Problems, Cassis (1995) 147–156Google Scholar
  12. 12.
    Schiermeyer, I.: Solving 3-Satisfiability in less than 1.579n Steps. 6th Workshop Computer Science Logic, Spring-Verlag (1993) 379–394Google Scholar
  13. 13.
    Schiermeyer, I.: Deciding 3-Colourability in less than O(1.415n) Steps. 19th Int. Workshop Graph-Theoretic Concepts in Computer Science, Spring-Verlag (1994) 177–182Google Scholar
  14. 14.
    Trümper, K., Radermacher, F. J.: Analyse der Leistungsfähigkeit eines neuen Systems zur Auswertung aussagenlogischer Probleme. In Technical Report FAW-TR-90003 (1990)Google Scholar
  15. 15.
    Urquhart, A.: Hard Examples for Resolution. JACM 34 (1987) 209–219Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Robert Rodošek
    • 1
  1. 1.IC-Parc, Imperial CollegeLondonEngland

Personalised recommendations