Advertisement

An inference engine for propositional two-valued logic based on the radical membership problem

  • Eugenio Roanes-Lozano
  • Luis M. Laita
  • Eugenio Roanes-Macías
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1138)

Abstract

In this paper, the well-known Radical Membership Problem of Commutative Algebra is adapted to develop an implementation of the inference processes in Knowledge Based Systems.

Let be a set of propositions, Γ a proposition, and let us denote their images, in a certain isomorphism, by σ and γ respectively. It can be established whether or not Γ follows from (Γ) by checking the equality of ideals <σ∪{1{it-t·γ}>=<1> in the polynomial model (t is a new variable). As a consequence, a criterion for consistency is obtained.

Keywords

Boolean Algebra Polynomial Ring Inference Engine Propositional Variable Quotient Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Related literature

References

  1. [An]
    A. de Antonio: Una Interpretación Algebraica de la Verificación de Sistemas Basados en el Conocimiento. Univ. Politécnica de Madrid (Ph.D. Thesis) (1994).Google Scholar
  2. [AB]
    J.A. Alonso, E. Briales: Lógicas Polivalentes y Bases de Gröbner. In: C. Martin (editor): Actas del V Congreso de Lenguajes Naturales y Lenguajes Formales (1995) 307–315.Google Scholar
  3. [Bu]
    B. Buchberger: Applications of Gröbner Bases in non-linear Computational Geometry. In: J.R. Rice (editor): Mathematical Aspects of Scientific Software. IMA Volumes in Math. and its Applications, vol. 14. Springer-Verlag (1988).Google Scholar
  4. [CLO]
    D. Cox, J. Little, D. O'Shea: Ideals, Varieties, and Algorithms. Springer-Verlag (1991).Google Scholar
  5. [CN]
    A. Capani, G. Niesi: CoCoA User's Manual. University of Genova (1996).Google Scholar
  6. [En]
    H.B. Enderton: A Mathematical Introduction to Logic. Academic Press (1972).Google Scholar
  7. [Ha]
    P.R. Halmos: Lectures on Boolean Algebras. Springer-Verlag (1974).Google Scholar
  8. [He]
    A. Heck: Introduction to Maple. Springer-Verlag (1993).Google Scholar
  9. [Hs]
    J. Hsiang: Refutational Theorem Proving using Term-Rewriting Systems. Artificial Intelligence 25 (1985) 255–300.CrossRefGoogle Scholar
  10. [KN]
    D. Kapur, P. Narendran: An Equational Approach to Theorem Proving in First-Order Predicate Calculus. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), vol. 2 (1985) pages 1146–1153.Google Scholar
  11. [LL]
    L. M. Laita, L. de Ledesma: Knowledge-Based Systems Verification. In: J.G. Williams, A. Kent (editors): Encyclopedia of Computer Science and Technology. M. Dekker (to appear).Google Scholar
  12. [LR]
    L. M. Laita, B. Ramírez, L. de Ledesma A. Riscos: A Formal Model for Verification of Dynamic Consistency of KBSs. Computers & Mathematics 29–5 (1995) 81–96.Google Scholar
  13. [LR1]
    L. M. Laita, L. de Ledesma, E. Roanes L., E. Roanes M.: An Interpretation of the Propositional Boolean Algebra as a k-algebra. Effective Calculus. In: J. Campbell, J. Calmet (editors): Proceedings of the Second International Workshop/Conference on Artificial Intelligence and Symbolic Mathematical Computing (AISMC-2). Lecture Notes in Computer Science 958. Springer-Verlag (1995) 255–263.Google Scholar
  14. [LR2]
    E. Roanes L., L. M. Laita, E. Roanes M.: Maple V in A.I.: The Boolean Algebra Associated to a KBS. CAN Nieuwsbrief 14, (1995) 65–70.Google Scholar
  15. [LR3]
    E. Roanes L., L.M. Laita: Verification of Knowledge Based Systems with Commutative Algebra and Computer Algebra Techniques. Proceedings of the 1st International Conference on Applications of Computer Algebra (IMACS). New Mexico University (USA) (1995) (electronic book).Google Scholar
  16. [LR4]
    L.M. Laita, E. Roanes L.: Verification of Knowledge Based Systems: An Algebraic Interpretation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-95) (Workshop on Verification and Validation of Knowledge Based Systems). McGill University, Montreal (Canadá), (1995) 91–95.Google Scholar
  17. [Me]
    E. Mendelson: Boolean Algebra. McGraw-Hill (1970).Google Scholar
  18. [Sh]
    J.R. Shoenfield: Mathematical Logic. Addisson-Wesley (1967).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Eugenio Roanes-Lozano
    • 1
  • Luis M. Laita
    • 2
  • Eugenio Roanes-Macías
    • 1
  1. 1.Dept. Algebra (Fac. Educación)Universidad Complutense de MadridMadridSpain
  2. 2.Dept. I.A. (Fac. Informática)Universidad Politécnica de MadridMadridSpain

Personalised recommendations