Skip to main content

Coevolutionary life-time learning

  • Basic Concepts of Evolutionary Computation
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

This work studies the interaction of evolution and learning. It starts from the coevolutionary genetic algorithm (CGA) introduced earlier. Two techniques — life-time fitness evaluation (LTFE) and predator-prey coevolution — boost the genetic search of a CGA. The partial but continuous nature of LTFE allows for an elegant incorporation of life-time learning (LTL) within CGAs. This way, not only the genetic search but also the LTL component focuses on “not yet solved” problems. The performance of the new algorithm is compared with various other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belew, R.K., McInerney, J., Schraudolph, N. N., (1992), Evolving Networks: Using the Genetic Algorithm with Connectionist Learning, in Artificial Life III, C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen (eds.), Addison-Wesley.

    Google Scholar 

  2. Chalmers, D. J., (1991), The Evolution of Learning: an Experiment in Genetic Connectionism, in Connectionist Models, Proceedings of the 1990 Summer School, Morgan Kaufmann.

    Google Scholar 

  3. Fahlman, S. E., Hinton, G. E., (1987), Connectionist Architectures for Artificial Intelligence, IEEE Computer 20(1), IEEE Computer Society Press

    Google Scholar 

  4. Fahlman, S. E., (1988), An Empirical Study of Learning Speed in Back-Propagation Networks, CMU Technical Report CMU-CS-88-162, Carnegie Mellon University, Pittsburgh.

    Google Scholar 

  5. Hart, W. E. H., (1994), Adaptive Global Optimization with Local Search, PhD Dissertation University of California, San Diego.

    Google Scholar 

  6. Hillis, W. D., (1992), Co-evolving Parasites Improve Simulated Evolution as an Optimization Procedure, in Artificial Life II, Langton, C.G.; Taylor, C.; Farmer, J.D., and Rasmussen, S., (eds), Addison-Wesley, California.

    Google Scholar 

  7. Kitano, H., (1990), Empirical Studies on the Speed of Convergence of Neural Network Training using Genetic Algorithms, Proceedings of the Eight National Conference on Artificial Intelligence, AAAI Press.

    Google Scholar 

  8. Paredis, J., (1991), The Evolution of Behavior: Some Experiments, Proceedings of Simulation of Adaptive Behavior: From Animals to Animats, Meyer, and Wilson (eds.), MIT Press / Bradford Books.

    Google Scholar 

  9. Paredis, J., (1994), Steps towards Coevolutionary Classification Neural Networks, Proceedings Artificial Life IV, R. Brooks, P. Maes (eds), MIT Press / Bradford Books.

    Google Scholar 

  10. Paredis, J., (1994), Coevolutionary Constraint Satisfaction, Proceedings PPSN-III, Lecture Notes in Computer Science, vol. 866, Davidor, Y., Schwefel, H-P., Manner, R. (eds.), Springer Verlag.

    Google Scholar 

  11. Paredis, J., (1995), The Symbiotic Evolution of Solutions and their Representations, Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 95), Eshelman, L. (ed.), Morgan Kaufmann Publishers.

    Google Scholar 

  12. Paredis, J., (1996), Symbiotic Coevolution for Epistatic Problems, Proceedings of the European Conference on Artificial Intelligence 1996 (ECAI 96), John Wiley & Sons (in press).

    Google Scholar 

  13. Paredis, J., (1996), Coevolutionary Computation, Artificial Life Journal, Vol. 2, nr. 4, Langton, C. (ed.), MIT Press / Bradford Books (in press).

    Google Scholar 

  14. Whitley, D., (1989), Optimizing Neural Networks using Faster, more Accurate Genetic Search. Proc. Third Int. Conf. on Genetic Algorithms, Morgan Kaufmann.

    Google Scholar 

  15. Whitley, D., (1993), Genetic Reinforcement Learning for Neurocontrol Problems, Machine Learning, 13: p. 259–284, Kluwer Academic Publishers.

    Google Scholar 

  16. Whitley, D., Gordon, V. S., Mathias, K., (1994), Lamarckian Evolution, The Baldwin Effect and Function Optimization, Proceedings PPSN-III, Lecture Notes in Computer Science, vol. 866, Davidor, Y., Schwefel, H-P., Manner, R. (eds.), Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paredis, J. (1996). Coevolutionary life-time learning. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_971

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_971

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics