Skip to main content

Avoiding combinatorial explosion in automatic test generation: Reasoning about measurements is the key

  • Conference paper
  • First Online:
KI-96: Advances in Artificial Intelligence (KI 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1137))

Included in the following conference series:

Abstract

The main thesis of this paper is that reasoning about measurements can be used as a basic mechanism for generating test plans for analogical circuits. Motivated by an application scenario, reasoning about measurements incorporates domain knowledge about testing conditions, local behavior of circuit components (fault modes covered by measurements) and the topological structure of the circuit to be tested. With the test generation architecture introduced in this paper, a combinatorial explosion which is problematic in model-based test generation approaches can be avoided.

Work in this project has been done in collaboration with “DTK: Gesellschaft für Technische Kommunikation mbH”, Hamburg. We would like to thank U. Haferstroh, A. Josub, M. Orligk and M. Schmidt. Many thanks also to our students A. Kaplunova and H. Paulsen who not only implemented large parts of the interface and the test generator but also contributed many good ideas for the PETS architecture. The project was supported by the Wirtschaftsbehörde of Hamburg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böttcher, C., No Faults in Structure? — How to Diagnose Hidden Interactions, in: Proc. IJCAI'95, Morgan Kaufmann Publ., 1995, pp. 1728–1734.

    Google Scholar 

  2. Bryant, R.E., On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplications, in: IEEE Transactions on Computers, Vol. 40, No. 2, February 1991, pp. 205–213.

    Google Scholar 

  3. De Kleer, J., Williams, B.C., Diagnosing Multiple Faults, in: Readings in Model-Based Diagnosis, Hamscher, W., Console, L., De Kleer, J. (Eds.), Morgan Kaufmann Publ., 1992, pp. 100–117.

    Google Scholar 

  4. De Kleer, J., Raiman, O., Trading off the costs of inference vs. probing in diagnosis, in: Proc. IJCAI'95, Morgan Kaufmann Publ. 1995, pp. 1736–1741.

    Google Scholar 

  5. Fujiwara, H., Shimono, T., On the Acceleration of Test Generation Algorithms, in: Proc. IEEE Transactions on Computers, pp., 1137–1144,1983.

    Google Scholar 

  6. Inderst, R., Automatische Testgenerierung auf der Basis einer qualitativen Modellierung physikalischer Systeme, in German, Diploma Thesis, University of Munich, Feb. 1995.

    Google Scholar 

  7. Khaani, F., Navabi, Z., VHDL Structural Models for the Implementation of Path Sensitation Test Generation, http://www.ece.neu.edu/info/vhdl/Postscript_papers/.

    Google Scholar 

  8. Mauss, J., Neumann, B., Diagnosis by Algebraic Modeling and Fault-Tree Induction, in: Proc. DX-95, 6th Int. Workshop on Principles of Diagnosis, Goslar, Germany, pp. 73–80, 1995.

    Google Scholar 

  9. Mauss, J., Neumann, B., How to Guide Qualitative Reasoning about Electrical Circuits by Series-Parallel Trees, in: Proc. QR'96, 10th Int. Workshop on Qualitative Reasoning, Stanford, CA, 1996.

    Google Scholar 

  10. Nayak, P.P., Automated Modeling of Physical Systems, Lecture Notes in Artificial Intelligence 1003, Springer 1995.

    Google Scholar 

  11. Raiman, O., de Kleer, J., Sarasvat, V., Shirley, M., Characterizing Non-Intermittent Faults, in: Proc. AAAI'91, Morgan Kaufmann Publ., 1991, pp. 849–854.

    Google Scholar 

  12. Roth, G.P. Computer Logic, Testing, and Verification, Computer Science Press, 1980.

    Google Scholar 

  13. Struss, P., What's in SD? Towards a Theory of Modeling for Diagnosis, in: Readings in Model-Based Diagnosis, Hamscher, W., Console, L., De Kleer, J. (Eds.), Morgan Kaufmann Publ., 1992, pp. 419–449.

    Google Scholar 

  14. Struss, P., Dressler, O., Physical Negation — Integrating Fault Models into the General Diagnostic Engine, in: Proc. IJCAI 89, Morgan Kaufmann Publ., 1989, pp. 1318–1323.

    Google Scholar 

  15. Struss, P., Testing Physical Systems, in: Proc. AAAI'94, Morgan Kaufmann Publ., pp. 251–256.

    Google Scholar 

  16. Struss, P., Model Abstraction for Testing of Physical Systems, in: Proc. QR'94, 8th Int. Workshop on Qualitative Reasoning, Nara, Japan, 1994.

    Google Scholar 

  17. Struss, P., Malik, A., Sachenbacher, M., Qualitative Modeling is the Key, in: Proc. DX-95, 6th Int. Workshop on Principles of Diagnosis, Goslar, Germany, pp. 73–80, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Günther Görz Steffen Hölldobler

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lange, H., Möller, R., Neumann, B. (1996). Avoiding combinatorial explosion in automatic test generation: Reasoning about measurements is the key. In: Görz, G., Hölldobler, S. (eds) KI-96: Advances in Artificial Intelligence. KI 1996. Lecture Notes in Computer Science, vol 1137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61708-6_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-61708-6_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61708-2

  • Online ISBN: 978-3-540-70669-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics