Advertisement

Drawing with colors

Extended abstract
  • Ashim Garg
  • Roberto Tamassia
  • Paola Vocca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1136)

Abstract

In this paper, we investigate the volume, aspect ratio, angular resolution, edge-separation, and bit-requirement of crossing-free straight-line 3D drawings. We assume the vertex resolution rule, which requires minimum unit distance between any two vertices. Our main result shows that an N-vertex graph colorable with O(1) colors admits a crossing-free straight-line 3D drawing with O(N√N) volume, O(1) aspect ratio,gW(l/NO(1)) angular resolution, Ω (1/NO(1)) edge-separation, and O(log N) bit-requirement, which can be constructed in O(N) time.

Keywords

Aspect Ratio Grid Point Rational Number Angular Resolution Graph Draw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Alt, M. Godau, and S. Whitesides. Universal 3-dimensional visibility representations for graphs. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science, pages 8–19. Springer-Verlag, 1996.Google Scholar
  2. 2.
    I. Bruß and A. Frick. Fast interactive 3-d graph visualization. In F. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of LNCS, pages 99–110, 1996.Google Scholar
  3. 3.
    T. Calamoneri and A. Sterbini. Drawing 2-, 3-and 4-colorable graphs in o(n 2) volume. Technical report, Dept. of Comp. Sc., Univ. Rome “La Sapienza”, 1996.Google Scholar
  4. 4.
    M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of graphs in two and three dimensions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 319–328, 1996.Google Scholar
  5. 5.
    R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph drawing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1995.Google Scholar
  6. 6.
    I. Cruz and J. Twarog. 3d graph drawing with simulated annealing. In F. Brendenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science, pages 162–165. Springer-Verlag, 1996.Google Scholar
  7. 7.
    G. Das and M. T. Goodrich. On the complexity of approximating and illuminating three-dimensional convex polyhedra. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes in Computer Science, pages 74–85. Springer-Verlag, 1995.Google Scholar
  8. 8.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl, 4:235–282, 1994.Google Scholar
  9. 9.
    P. Eades and P. Garvan. Drawing stressed planar graphs in three dimensions. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science. Springer-Verlag, 1996.Google Scholar
  10. 10.
    P. Eades, C. Stirk, and S. Whitesides. The techniques of Komolgorov and Bardzin for three dimensional orthogonal graph drawings. Manuscript, Dept. of Computer Sci., Univ. of Newcastle, 1995.Google Scholar
  11. 11.
    M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Simvonis, E. Welzl, and G. Woeginger. Drawing graphs in the plane with high resolution. SIAM J. Comput, 22:1035–1052, 1993.Google Scholar
  12. 12.
    A. Garg and R. Tamassia. Area-optimal upward tree drawings. Int. Journal of Computational Geometry: Theory and Applns. to appear.Google Scholar
  13. 13.
    S. M. Hashemi and I. Rival. Upward drawings to fit surfaces. In Order, Algorithms, and Applications (Proc. ORDAL '94), volume 831 of Lecture Notes in Computer Science, pages 53–58. Springer-Verlag, 1994.Google Scholar
  14. 14.
    D. Jablonowsky and V. A. Guarna. GMB: A tool for manipulating and animating graph data structures. Softw. — Pract. Exp., 19(3):283–301, 1989.Google Scholar
  15. 15.
    T. Jéron and C. Jard. 3D layout of reachability graphs of communicating processes. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 25–32. Springer-Verlag, 1995.Google Scholar
  16. 16.
    F. T. Leighton and A. Rosenberg. 3d circuit layouts. SIAM J. Comput., 15:793–813, 1986.Google Scholar
  17. 17.
    G. Liotta and G. Di Battista. Computing proximity drawings of trees in the 3-dimemsional space. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes in Computer Science, pages 239–250. Springer-Verlag, 1995.Google Scholar
  18. 18.
    B. Monien, F. Ramme, and H. Salmen. A parallel simulated annealing algorithm for generating 3d layouts of undirected graphs. In F. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of LNCS, pages 396–408, 1996.Google Scholar
  19. 19.
    S. P. Reiss. An engine for the 3D visualization of program information. J. Visual Languages and Computing, 6(3), 1995. (special issue on Graph Visualization, edited by I. F. Cruz and P. Eades).Google Scholar
  20. 20.
    G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated 3d visualizations of hierarchical information. In Proc. CHI, pages 189–193, 1991.Google Scholar
  21. 21.
    A. L. Rosenberg. Three-dimensional VLSI: a case study. J. ACM, 30(3):397–416, 1983.Google Scholar
  22. 22.
    E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder. Julius Springer, Berlin, Germany, 1934.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Ashim Garg
    • 1
  • Roberto Tamassia
    • 1
  • Paola Vocca
    • 2
  1. 1.Center for Geometric Computing Department of Computer ScienceBrown UniversityProvidenceUSA
  2. 2.Dipartimento di MatematicaUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations