Tool design for structuring mechanisms for algebraic specification languages with initial semantics

  • Dietmar Wolz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1130)


In [18] a ML-program for computations in category theory, including an implementation of the semantics of specification-building operations for the language CLEAR [6] is presented. We propose a similar approach but use object oriented methods to achieve better abstractness, reusability and efficiency. We prove correctness and the worst case time bounds of the basic algorithm computing colimits on set diagrams. We show how the comma category representations of signatures, specifications and attributed graphs suggests colimit algorithms on the corresponding diagrams.


Hash Table Specification Language Linear Complexity Category Theory Graph Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Lee A. Stepanov. The standard template library. Technical report, Hewlett-Packard Laboratories, September 20 1994. available via as pub/stl/ Scholar
  2. 2.
    J. Adádamek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. Series in Pure and Applied Mathematics. Wiley, New York, 1990.Google Scholar
  3. 3.
    A. Asperti and G. Longo. Categories, Types and Structures. Foundations of Computing Series. MIT Press, 1991.Google Scholar
  4. 4.
    M. Barr and C. Wells. Category Theory for Computing Science. Series in Computer Science. Prentice Hall International, London, 1990.Google Scholar
  5. 5.
    G. Booch. Object Oriented Analysis and Design. Benjamin/Cummings, 2nd edition, 1994.Google Scholar
  6. 6.
    R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification language. In D. Bjøner, editor, Abstract Software Specification, Proc. 1979 Copenhagen Winter School, LNCS 86, pages 292–332. Springer, 1980.Google Scholar
  7. 7.
    I. Claßen. Revised ACT ONE: Categorical constructions for an algebraic specification language. In Categorical Methods in Computer Science, LNCS 393, pages 124–141. Springer, 1989.Google Scholar
  8. 8.
    I. Claßen. Compositionality of Application Oriented Structuring Mechanisms for Algebraic Specification Languages with Initial Semantics. PhD thesis, Technische Universität Berlin, 1993.Google Scholar
  9. 9.
    I. Claßen and M. Löwe. Scheme evolution in object-oriented models — a graph transformation approach. In ICSE '95 — 17th Workshop on Formal Methods Application in Software Engineering Practice, Seattle, Washington, April 1995.Google Scholar
  10. 10.
    A. Stepanov D. R. Musser. Generic programming. In LNCS 358, pages 13–25. Springer, 1989.Google Scholar
  11. 11.
    H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1985.Google Scholar
  12. 12.
    S. Erdmann and I. Classen. Alpha — a class library for a metamodel. In Proc. AMAST '96, to appear, 1996.Google Scholar
  13. 13.
    J. A. Goguen. A categorical manifesto. Technical Monograph PRG-72, Oxford University Computing Laboratory, 1989.Google Scholar
  14. 14.
    M. Jazajery. Component programming — a fresh look at software components. In Proceedings of the 5th European Software Engineering Conference, Sitges, Spain, September 25–28 1995.Google Scholar
  15. 15.
    M. Löwe and M. Beyer. AGG — An implementation of algebraic graph rewriting. In 5th Intl. Conf. on Rewriting Techniques and Applications, RTA-93, volume 690 of LNCS, pages 451–456. Springer, 1993.Google Scholar
  16. 16.
    D. R. Musser. Rationale for adding hash tables to the C++ standard template library. Technical report, February, 20 1995. available from as pub/stl/ Scholar
  17. 17.
    J. Padberg. Kolimeskonstruktionen in Algebraischen Spezifikationssprachen. Studienarbeit, Technische Universität Berlin, 1991.Google Scholar
  18. 18.
    D. E. Rydeheard and R. M. Burstall. Computational Category Theory. International Series in Computer Science. Prentice Hall, 1988.Google Scholar
  19. 19.
    D. T. Sannella. A set-theoretic semantics for CLEAR. Acta Informatica, 21:443–472, 1984.Google Scholar
  20. 20.
    G. Schied. Über Graphgrammatiken, eine Spezifikationsmethode für Programmiersprachen und verteilte Regelsysteme. PhD thesis, Universität Erlangen-Nürnberg, 1991.Google Scholar
  21. 21.
    R.E. Tarjan. Data Structures and Network Algorithms, volume 44. CBMS-NSF Regional Conference Series in Applied Mathematics, 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Dietmar Wolz
    • 1
  1. 1.Fachbereich 20 InformatikTechnische Universität BerlinBerlinGermany

Personalised recommendations