Using limits of parchments to systematically construct institutions of partial algebras

  • Till Mossakowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1130)


Abstract Syntax Congruence Relation Left Adjoint Partial Algebra Partial Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Adámek, J. Rosický. Locally Presentable and Accessible Categories. Cambridge University Press, 1994.Google Scholar
  2. [2]
    E. Astesiano, M. Cerioli. Non-strict don't care algebras and specifications. Mathematical Structures in Comupter Science, 1996. To appear.Google Scholar
  3. [3]
    M. Bidoit, H.-J. Kreowski, P. Lescannes, F. Orejas, D. Sannella. Algebraic System Specification and Development. A Survey and Annotated Bibliography, Lecture Notes in Computer Science 501. Springer Verlag, 1991.Google Scholar
  4. [4]
    P. Burmeister. A model theoretic approach to partial algebras. Akademie Verlag, Berlin, 1986.Google Scholar
  5. [5]
    R. M. Burstall, J. A. Goguen. Putting theories together to make specifications. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, 1045–1058. Cambridge, 1977.Google Scholar
  6. [6]
    M. Cerioli. Relationships between Logical Formalisms. PhD thesis, TD-4/93, Università di Pisa-Genova-Udine, 1993.Google Scholar
  7. [7]
    H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 1. Springer Verlag, Heidelberg, 1985.Google Scholar
  8. [8]
    J. A. Goguen, R. M. Burstall. A study in the foundations of programming methodology: Specifications, institutions, charters and parchments. In D. Pitt et al., ed., Category Theory and Computer Programming, LNCS 240, 313–333. Springer Verlag, 1985.Google Scholar
  9. [9]
    J. A. Goguen, R. M. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39, 95–146, 1992. Predecessor in: LNCS 164(1984):221–256.Google Scholar
  10. [10]
    H. Hilberdink. The end of syntax. The end of algebra. Manuscripts, St. Peter's College, Oxford, 1995.Google Scholar
  11. [11]
    C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, 1990.Google Scholar
  12. [12]
    S.C. Kleene. Introduction to Metamathematics. North Holland, 1952.Google Scholar
  13. [13]
    T. Mossakowski. Equivalences among various logical frameworks of partial algebras. In H. Kleine Büning et al., ed., Computer Science Logic. 9th Workshop, CSL'95. Paderborn, Germany, September 1995. Springer LNCS, 1996. To appear.Google Scholar
  14. [14]
    D. S. Scott. Identity and existence in intuitionistic logic. In M.P. Fourman, C.J. Mulvey, D.S. Scott, eds., Application of Sheaves, Lecture Notes in Mathematics 753, 660–696. Springer Verlag, 1979.Google Scholar
  15. [15]
    P. Stefaneas. The first order parchment. Report PRG-TR-16-92, Oxford University Computing Laboratory, 1992.Google Scholar
  16. [16]
    A. Tarlecki. Working with multiple logical systems. Unpublished manuscript. See Scholar
  17. [17]
    A. Tarlecki. On the existence of free models in abstract algebraic institutions. Theoretical Computer Science 37, 269–304, 1985.Google Scholar
  18. [18]
    A. Tarlecki. Bits and pieces of the theory of institutions. In D. Pitt, S. Abramsky, A. Poigné, D. Rydeheard, eds., Proc. Intl. Workshop on Category Theory and Computer Programming, Guildford 1985, LNCS 240, 334–363. Springer-Verlag, 1986.Google Scholar
  19. [19]
    A. Tarlecki, R. M. Burstall, J. A. Goguen. Some fundamentals algebraic tools for the semantics of computation. Part 3: Indexed categories. Theoretical Computer Science 91, 239–264, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Till Mossakowski
    • 1
  1. 1.Dept. of Computer ScienceUniversity of BremenBremen

Personalised recommendations