Skip to main content

Intramolecular carbon-carbon bond forming reactions at the anode

  • Chapter
  • First Online:
Electrochemistry VI Electroorganic Synthesis: Bond Formation at Anode and Cathode

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 185))

Abstract

Oxidative cyclization reactions offer a unique opportunity both for generating new carbon-carbon bonds and for gaining insight into the mechanisms that govern a variety of radical, radical cation, and cation intermediates. This review surveys recent developments in the use of electrochemistry as a tool for initiating these intriguing reactions. The transformations examined range from fragmentation reactions resulting in radical cyclization pathways to radical cation-based cycloaddition reactions resulting in the formation of two or more bonds. The products generated range from simple five-, six-, and seven-membered rings to complex bridged and fused polycyclic ring skeletons. Many of the cyclic products obtained either retain the functionality used to initiate their formation or have a higher level of functionality than that found in the starting material. The degree of functionality in the products would appear to make them ideal candidates for further synthetic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. For a general overview of organic electrochemistry see Lund H, Baizer MM (1991) Organic electrochemistry: an introduction and a guide, 3rd ed. M Dekker, New York.

    Google Scholar 

  2. For overviews of anodic electrochemistry see Torii S (1985) Electroorganic synthesis: methods and applications: part I — oxidations. VCH, Deerfield Beach, FL

    Google Scholar 

  3. Yoshida K (1984) Electrooxidation in organic chemistry: the role of cation radicals as synthetic intermediates. John Wiley and Sons, New York

    Google Scholar 

  4. Ross SD, Finkelstein M, Rudd EJ (1975) Anodic oxidation. Academic Press, New York

    Google Scholar 

  5. Schäfer HJ (1981) Angew Chem Int Ed Eng 20: 911

    Google Scholar 

  6. For excellent summaries of recent work see Torii S (ed) (1995) Novel trends in electroorganic synthesis. Kodansha, Tokyo

    Google Scholar 

  7. Nonaka T, Tokuda K (eds) (1994) Denki Kagaku, 62 (12)

    Google Scholar 

  8. Little RD, Weinberg NL (1991) Electroorganic synthesis: Festschrift for Manuel M. Baizer, M Dekker, New York

    Google Scholar 

  9. Fry A (1993) Aldrichimica Acta 26: 3

    Google Scholar 

  10. Swenton JS, Morrow GW (eds) (1991) Synthetic applications of anodic oxidations, Tetrahedron 42

    Google Scholar 

  11. For reactions using Mn(OAc)3 see Snider BB (1996) Chem Rev 96:339

    Google Scholar 

  12. Snider BB, Cole BM (1995) J Org Chem 60: 5376

    Google Scholar 

  13. Zhang Q, Mohan R, Cook L, Kazanis S, Peisach D, Foxman BM, Snider BB (1993) J Org Chem 58: 7640

    Google Scholar 

  14. Snider BB, Wan BYF, Buckman BO, Foxman BM (1991) J Org Chem 56: 328

    Google Scholar 

  15. Snider BB, Merritt JE, Dombroski MA, Buckman BO (1991) J Org Chem 56: 5544

    Google Scholar 

  16. Curran DP, Morgan TM, Schwartz CE, Snider BB, Dombroski MA (1991) J Am Chem Soc 113: 6607

    Google Scholar 

  17. Dombroski MA, Kates SA, Snider BB (1990) J Am Chem Soc 112: 2759

    Google Scholar 

  18. Kates SA, Dombroski MA, Snider BB (1990) J Org Chem 55: 2427

    Google Scholar 

  19. Snider BB, Patricia JJ (1989) J Org Chem 54: 38

    Google Scholar 

  20. Snider BB, Patricia JJ, Kates SA (1988) J Org Chem 53: 2137

    Google Scholar 

  21. Snider BB, Dombroski MA (1987) J Org Chem 52: 5487

    Google Scholar 

  22. Mohan R, Kates SA, Dombroski MA, Snider BB (1987) Tetrahedron Lett 28: 845

    Google Scholar 

  23. Snider BB, Mohan R, Kates SA (1987) Tetrahdron Lett 28: 841

    Google Scholar 

  24. Snider BB, Mohan R, Kates SA (1985) J Org Chem 50: 3659

    Google Scholar 

  25. Corey EJ, Ghosh AK (1987) Tetrahedron Lett 28: 175

    Google Scholar 

  26. Corey EJ, Gross AW (1985) Tetrahedron Lett. 26: 4291

    Google Scholar 

  27. Corey EJ, Kang M (1984) J Am Chem Soc 106: 5384

    Google Scholar 

  28. Fristad WE, Peterson JR, Ernst AB, Urbi GB (1986) Tetrahedron 42: 3429

    Google Scholar 

  29. Fristad WE, Hershberger SS (1985) J Org Chem 50: 1026

    Google Scholar 

  30. Fristad WE, Peterson JR, Ernst AB (1985) J Org Chem 50: 3143

    Google Scholar 

  31. Fristad WE, Peterson JR (1985) J Org Chem 50:10

    Google Scholar 

  32. Fristad WE, Ernst AB (1985) Tetrahedron Lett 26: 3761.

    Google Scholar 

  33. For reactions using other metals see Pattenden G, Bhandal H, Russell JJ (1986) Tetrahedron Lett 27: 2299

    Google Scholar 

  34. Pattenden G, Patel VF, Russell JJ (1986) Tetrahedron Lett 27: 2303

    Google Scholar 

  35. Kraus GA, Landgrebe K (1984) Tetrahedron Lett 25: 3939

    Google Scholar 

  36. Baldwin JE, Li CS (1987) J Chem Soc, Chem Commun 1987: 166

    Google Scholar 

  37. Snider BB, Kwon T (1990) J Org Chem 55: 4786

    Google Scholar 

  38. For a recent review of the Kolbe electrolysis reaction see Schäfer HJ (1990) Topics in Current Chemistry 152: 91

    Google Scholar 

  39. For an excellent review of aryl-aryl coupling reactions see reference 1c, section 4–3 and references therein

    Google Scholar 

  40. Huhtasaari M, Schäfer HJ, Becking L (1984) Angew Chem Int Ed Eng 23: 980

    Google Scholar 

  41. Miller LL, Stermitz FR, Falck JR (1973) J Am Chem Soc 95: 2651

    Google Scholar 

  42. Tabakovic I (1996) Topics in Current Chemistry, this volume.

    Google Scholar 

  43. For pioneering work with anodic amide oxidations see: Ross SD, Finkelstein M, Peterson C, (1964) J Am Chem Soc 86: 4139

    Google Scholar 

  44. Ross SD, Finkelstein M, Peterson C (1966) J Org Chem 31: 128, and

    Google Scholar 

  45. Ross SD, Finkelstein M, Peterson, C (1966) J Am Chem Soc 88: 4657.

    Google Scholar 

  46. For reviews of anodic amide oxidations see Shono T (1984) Tetrahedron 40: 811 and

    Google Scholar 

  47. Shono T, Matsumura Y, Tsubata K (1984) Organic Synthesis 63: 206

    Google Scholar 

  48. Shono T, Matsumura Y, Tsubata K (1981) J Am Chem Soc 103: 1172

    Google Scholar 

  49. Shono T (1988) Topics in Current Chemistry 148: 131

    Google Scholar 

  50. Shono T, Matsumura Y, Inoue K (1983) J Org Chem 48: 1388

    Google Scholar 

  51. Thaning M, Wistrand LG (1986) Helv Chim Acta 69: 1711

    Google Scholar 

  52. Renaud P, Seebach D (1986) Angew Chem Int Ed Eng 25: 843

    Google Scholar 

  53. Renaud P, Seebach D (1986) Helv Chim Acta 69: 1704

    Google Scholar 

  54. Seebach D, Charczuk R, Gerber C, Renaud P, Berner H, Schneider H (1989) Helv Chim Acta 72: 401

    Google Scholar 

  55. Papadopoulos A, Heyer J, Ginzel KD, Steckhan E (1989) Chem Ber 122: 2159

    Google Scholar 

  56. Ginzel KD, Brungs P, Steckhan E (1989) Tetrahedron 45: 1691

    Google Scholar 

  57. Papadopoulos A, Lewall B, Steckhan E, Ginzel KD, Knoch F, Nieger M (1991) Tetrahedron 47: 563

    Google Scholar 

  58. Barrett AGM, Pilipauskas D (1991) J Org Chem 56: 2787

    Google Scholar 

  59. Moeller KD, Rothfus SL, Wong PL (1991) Tetrahedron 47: 583

    Google Scholar 

  60. Moeller KD, Rutledge LD (1992) J Org Chem 57: 6360

    Google Scholar 

  61. Cornille F, Fobian YM, Slomczynska U, Beusen DD, Marshall GR, Moeller KD (1994) Tetrahedron Lett 35: 6989

    Google Scholar 

  62. Cornille F, Slomczynska U, Smythe ML, Beusen DD, Moeller KD, Marshall GR (1995) J Am Chem Soc 117: 909

    Google Scholar 

  63. Slomczynska U, Chalmers DK, Cornille F, Smythe ML, Beusen DD, Moeller KD, Marshall GR (1996) J Org Chem 61: 1198, and

    Google Scholar 

  64. Fobian YM, d'Avignon DA, Moeller KD (1996) Bioorg Med Chem Lett 6: 315

    Google Scholar 

  65. Wong PL, Moeller KD (1993) J Am Chem Soc 115: 11434

    Google Scholar 

  66. Li W, Hanau CE, d'Avignon A, Moeller KD (1995) J Org Chem 60: 8155

    Google Scholar 

  67. Unpublished results with Li W, Gershengorn M, Perlman J, and Moeller KD. For related work with conformationally restricted pyroglutamate rings see: Rutledge LD, Perlman JH, Gershengorn MC, Marshall GR, Moeller KD (1996) J Med Chem 39: 1571

    Google Scholar 

  68. For reviews of chemical approaches to radical cyclization reactions see: Motherwell WB, Crich D (1992) Free radical chain reactions in organic synthesis, Academic Press, London

    Google Scholar 

  69. Giese B (1986) Radicals in organic synthesis: formation of carbon-carbon bonds, Pergamon, Oxford, and

    Google Scholar 

  70. Jasperse CP, Curran DP, Fevig TL (1991) Chem Rev 91: 1237

    Google Scholar 

  71. Becking L, Schfer HJ (1988) Tetrahedron Lett 29: 2797

    Google Scholar 

  72. Weiguny J, Schäfer HJ (1994) Liebigs Ann Chem 235

    Google Scholar 

  73. Kishi M, Takahashi K, Kawanda K, Goh Y (1991) EP 0471856A1 and (1992) Chem Abst 116: P59072s

    Google Scholar 

  74. For chemical routes to tandem radical cyclization reaction see Curran DP, Kuo SC (1987) Tetrahedron 43: 5653, as well as reference 17c.

    Google Scholar 

  75. Matzeit A, Schäfer HJ (1995) Radical tandem cyclizations. In: Torii S (ed) Novel trends in electroorganic synthesis, Kodansha, Tokyo

    Google Scholar 

  76. Yoshida J, Sakaguchi K, Isoe S (1988) J Org Chem 53: 2525

    Google Scholar 

  77. Snider BB, McCarthy BA (1994) ACS symposium series: benign by design 577: 84

    Google Scholar 

  78. Shundo R, Nishiguchi I, Matsubara, Y Hirashima, T (1991) Chem Lett 1991: 235

    Google Scholar 

  79. Shundo R, Nishiguchi I, Matsubara Y, Hirashima T (1991) Tetrahedron 47: 831

    Google Scholar 

  80. Nédélec JY, Nohair K (1991) Synlett 1991: 659

    Google Scholar 

  81. Bergamini F, Citterio A, Gatti N, Nicolini M, Santi R, Sebastiano R (1993) J Chem Research (S) 1993: 364

    Google Scholar 

  82. Warsinsky R, Steckhan E (1995) Oxidative free radical additions of α-nitro amides to alkenes and alkynes mediated by electrochemically regenerable manganese (III) acetate. In: Torii S (ed) Novel trends in electroorganic synthesis, Kodansha, Tokyo, pg 135; J. Chem. Soc. Perkin Trans 1 (1994) 1994: 2027

    Google Scholar 

  83. Elinson MN, Feducovich SK, Lizunova TL, Nikishin GI (1995) Electroorganic synthesis of substituted cyclopropanes. In: Torii S (ed) Novel trends in electroorganic synthesis, Kodansha, Tokyo, pg 47

    Google Scholar 

  84. Yoshida J, Ishichi Y, Isoe S (1992) J Am Chem Soc 114: 7594

    Google Scholar 

  85. Yoshida J, Takada K, Ishichi Y, Isoe S (1995) Electrooxidative cyclization using group 14 metals. In: Torii, S (ed) Novel trends in electroorganic synthesis, Kodansha, Tokyo, pg 295

    Google Scholar 

  86. Yoshida J, Maekawa T, Murata T, Matsunaga S, Isoe S (1990) J Am Chem Soc 112: 1962

    Google Scholar 

  87. Ohmori H, Maki T, Maeda H (1995) Synthetic application of acyl-and alkoxy-phosphonium ions. In: Torii, S (ed) Novel trends in electroorganic synthesis, Kodansha, Tokyo, pg 345

    Google Scholar 

  88. Maeda H, Maki T, Ohmori H (1992) Tetrahedron Lett 33: 1347

    Google Scholar 

  89. Yamamura S (1995) Synthetic studies on natural products using electrochemical method as a key step. In: Torii, S (ed) Novel trends in electroorganic synthesis, Kodansha, Tokyo, pg 265

    Google Scholar 

  90. Maki S, Kosemura S, Yamamura S, Kawano S, Ohba S (1992) Chem Lett 1992: 651

    Google Scholar 

  91. Maki S, Toyoda K, Kosemura S, Yamamura S (1993) Chem Lett 1993: 1059

    Google Scholar 

  92. Maki S, Asaba N, Kosemura S, Yamamura S (1992) Tetrahedron Lett 33: 4169

    Google Scholar 

  93. Shizuri Y, Okuno Y, Shigemori H, Yamamura S (1987) Tetrahedron Lett 28: 6661

    Google Scholar 

  94. Maki S, Kosemura S, Yamamura S, Ohba S (1993) Tetrahedron Lett 34: 6083

    Google Scholar 

  95. Shizuri Y, Maki S, Ohkubo M, Yamamura S (1990) Tetrahedron Lett 31: 7167

    Google Scholar 

  96. Maki S, Toyoda K, Mori T, Kosemura S, Yamamura S (1994) Tetrahedron Lett 35: 4817

    Google Scholar 

  97. Morrow GW, Chen Y, Swenton JS (1991) Tetrahedron 47: 655 and

    Google Scholar 

  98. Morrow GW, Swenton JS (1987) Tetrahedron Lett 28: 5445

    Google Scholar 

  99. Swenton JS, Carpenter K, Chen Y, Kerns ML, Morrow GW (1993) J Org Chem 58: 3308

    Google Scholar 

  100. Swenton JS, Callinan A, Chen Y, Rohde JJ, Kerns ML, Morrow GW (1996) J Org Chem 61: 1267

    Google Scholar 

  101. Moeller KD, New DG (1994) Tetrahedron Lett 35: 2857

    Google Scholar 

  102. Tesfai Z, Moeller KD (1994) Denki Kagaku 62: 1115

    Google Scholar 

  103. New DG, Tesfai Z, Moeller KD (1996) J Org Chem 61: 1578

    Google Scholar 

  104. Danheiser RL, Stoner EJ, Koyama H, Yamashita DS, Klade C (1989) J Am Chem Soc 111: 4407

    Google Scholar 

  105. Carté B, Kernan MR, Barrabee EB, Faulkner DJ (1986) J Org Chem 51: 3528

    Google Scholar 

  106. Gopalan A, Magnus P (1984) J Org Chem 49: 2317

    Google Scholar 

  107. Tanis SP, Dixon LA (1987) Tetrahedron Lett 28: 2495

    Google Scholar 

  108. Hiroi K, Sato H (1987) Synthesis 1987: 811

    Google Scholar 

  109. Padwa A, Ishida M (1991) Tetrahedron Lett 32: 5673

    Google Scholar 

  110. For reviews see a) Dean FM (1982) Adv. Heterocycl. Chem. 30: 161

    Google Scholar 

  111. Lipshutz, BH (1986) Chem Rev 86: 795

    Google Scholar 

  112. Shono T, Nishiguchi I, Kashimura S, Okawa M (1978) Bull Chem Soc Jpn 51: 2181

    Google Scholar 

  113. Belleau B, Au-Young YK (1969) Can J Chem 47: 2117

    Google Scholar 

  114. Fritsch JM, Weingarten H (1968) J Am Chem Soc 90: 793

    Google Scholar 

  115. Fritsch JM, Weingarten H, Wilson JD (1970) J Am Chem Soc 92: 4038

    Google Scholar 

  116. Le Moing MA, Le Guillanton G, Simonet J (1981) Electrochim Acta 26: 139

    Google Scholar 

  117. Engels R, Schäfer HJ, Steckhan E (1977) Liebigs Ann Chem 1977: 204

    Google Scholar 

  118. Schäfer HJ, Steckhan E (1970) Tetrahedron Lett 11: 3835

    Google Scholar 

  119. Schäfer HJ, Steckhan E (1974) Angew Chem Int Ed Engl 13: 472

    Google Scholar 

  120. Koch D, Schäfer HJ, Steckhan E (1974) Chem Ber 107: 3640

    Google Scholar 

  121. Fox MA, Akaba R (1983) J Am Chem Soc 103: 3460

    Google Scholar 

  122. For an overview of early work see a) Hudson CM, Marzabadi MR, Moeller KD, New DG (1991) J Am Chem Soc 113: 7372

    Google Scholar 

  123. Moeller KD, Tinao LV (1992) J Am Chem Soc 114: 1033

    Google Scholar 

  124. Moeller KD, Hudson CM, Tinao-Wooldridge LV (1993) J Org Chem 58: 3478

    Google Scholar 

  125. Hudson CM, Moeller KD (1994) J Am Chem Soc 116: 3347

    Google Scholar 

  126. Miura K, Oshima K, Utimoto K (1989) Tetrahedron Lett 30: 4413

    Google Scholar 

  127. Tinao-Wooldridge LV, Moeller KD, Hudson CM (1994) J Org Chem 59: 2381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Steckhan

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Moeller, K.D. (1997). Intramolecular carbon-carbon bond forming reactions at the anode. In: Steckhan, E. (eds) Electrochemistry VI Electroorganic Synthesis: Bond Formation at Anode and Cathode. Topics in Current Chemistry, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61454-0_70

Download citation

  • DOI: https://doi.org/10.1007/3-540-61454-0_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61454-8

  • Online ISBN: 978-3-540-68591-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics