Skip to main content

Structure and function of eukaryotic mono-ADP-ribosyltransferases

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology, Volume 129

Part of the book series: Reviews of Physiology Biochemistry and Pharmacology ((REVIEWS,volume 129))

  • 88 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Cattabeni F, Di Giulio AM, Finco C, Paoletti AM, Tenconi B, Gorio A (1991) Early alteration of Gi/Go protein-dependent transductional processes in the retina of diabetic animals. J Neurosci Res 29:196–200

    Google Scholar 

  • Aktories K (1994) Clostridial ADP-ribosylating toxins: effects on ATP and GTP-binding proteins. Mol Cell Biochem 138:167–176

    Google Scholar 

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KG, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Google Scholar 

  • Allured VS, Collier RJ, Carroll SF, McKay DB (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci USA 83:1320–1324

    Google Scholar 

  • Alvarez-Gonzales R, Pacheco-Rodriguez G, Mendoza-Alvarez H (1994) Enzymology of ADP-ribose polymer synthesis. Mol Cell Biochem 138:33–57

    Google Scholar 

  • Antoine R, Locht C (1994) The NAD-glycohydrolase activity of the pertussis toxin S1 subunit: involvement of the catalytic His-35 residue. J Biol Chem 269:6450–6457

    Google Scholar 

  • Antoine R, Tallett A, van Heyningen S, Locht C (1993) Evidence for a catalytic role of glutamic acid 129 in the NAD-glycohydrolase activity of the pertussis toxin S1 subunit. J Biol Chem 268:24149–24155

    Google Scholar 

  • Banasik M, Ueda K (1994) Inhibitors and activators of ADP-ribosylation reactions. Mol Cell Biochem 138:185–197

    Google Scholar 

  • Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 267:1569–1575

    Google Scholar 

  • Barbieri JT, Mende-Mueller LM, Rappuoli R, Collier RJ (1989) Photolabeling of Glu-129 of the S1 subunit of pertussis toxin with NAD. Infect Immun 57:3549–3554

    Google Scholar 

  • Bennett MJ, Eisenberg D (1995) Refined structure of monomeric diphtheria toxin at 2.3 Angstrom resolution. Protein Sci 3:1464–1475

    Google Scholar 

  • Blanke SR, Huang K, Wilson BA, Papini E, Covacci A, Collier RJ (1994a) Active-site mutations of diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry 33:5155–5161

    Google Scholar 

  • Blanke SR, Huang K, Collier RJ (1994b) Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation. Biochem 33:15494–15500

    Google Scholar 

  • Bohmer J, Jung M, Sehr P, Fritz G, Popoff M, Just I, Aktories K (1996) Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum — analysis of glutamic acid 174. Biochemistry 35:282–289

    Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22-kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76

    Google Scholar 

  • Burnette WN, Cieplak W, Mar VL, Kaljot KT, Sato H, Keith JM (1988) Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope. Science 242:72–74

    Google Scholar 

  • Burnette WN, Mar VL, Platler BW, Schlotterbeck JD, McGinley MD, Stoney KS, Rohde MF, Kaslow HR (1991) Site-specific mutagenesis of the catalytic subunit of cholera toxin: substitution lysine for arginine 7 causes loss of activity. Infect Immun 59:4266–4270

    Google Scholar 

  • Burstein D, Mordes JP, Greiner DL, Stein D, Nakamura N, Handler ES, Rossini AA (1989) Prevention of diabetes in BB/Wor rat by single transfusion of spleen cells. Parameters that affect degree of protection. Diabetes 38:24–30

    Google Scholar 

  • Carroll SF, Collier RJ (1987) Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 262:8707–8711

    Google Scholar 

  • Carroll SF, Collier RJ (1988) Amino acid sequence homology between the enzymic domains of diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Mol Microbiol 2:293–296

    Google Scholar 

  • Carroll SF, McCloskey JA, Crain PF, Oppenheimer NJ, Marschner TM, Collier RJ (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148. Proc Natl Acad Sci USA 82:7237–7241

    Google Scholar 

  • Chang Y-C, Soman G, Graves DJ (1986) Identification of an enzymatic activity that hydrolyzes protein-bound ADP-ribose in skeletal muscle. Biochem Biophys Res Commun 139:932–939

    Google Scholar 

  • Chao D, Severson DL, Zwiers H, Hollenberg MD (1994) Radiolabelling of bovine myristoylated alanine-rich protein kinase C substrate (MARKS) in an ADP-ribosylation reaction. Biochem Cell Biol 72:391–396

    Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PMG, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    Google Scholar 

  • Cieplak W Jr, Mead DJ, Messer RJ, Grant CCR (1995) Site-directed mutagenic alteration of potential active-site residues of the A subunit of Escherichia coli heat-labile enterotoxin. J Biol Chem 270:30545–30550

    Google Scholar 

  • Clancy R, Leszczynska J, Amin A, Levartovsky D, Abramson SB (1995) Nitric oxide stimulates ADP-ribosylation of actin in association with the inhibition of actin polymerization in human neutrophils. J Leukoc Biol 58:196–202

    Google Scholar 

  • Coburn J, Kane AV, Feig L, Gill DM (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266:6438–6446

    Google Scholar 

  • Coggins PF, McLean K, Nagy A, Zwiers H (1993a) ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43. J Neurochem 60:368–371

    Google Scholar 

  • Coggins PJ, McLean K, Zwiers H (1993b) Neurogranin, a B-50/GAP-43-immunoreactive C-kinase substrate (BICKS), is ADP-ribosylated. FEBS Lett 335:109–113

    Google Scholar 

  • Collier RJ (1990) Diphtheria toxin: structure and function of a cytocidal protein. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 3–19

    Google Scholar 

  • Davis T, Shall S (1995) Sequence of a chicken erythroblast mono(ADP-ribosyl)transferase-encoding gene and its upstream region. Gene 164:371–372

    Google Scholar 

  • De Matteis MA, Di Girolamo M, Colanzi A, Pallas M, De Tullio G, McDonald LJ, Moss J, Santini G, Bannykh S, Corda D, Luini A (1994) Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci USA 91:1114–1118

    Google Scholar 

  • Di Girolamo M, Silletta MG, De Matteis MA, Braca A, Colanzi A, Pawlak D, Rasenick MM, Luini A, Corda D (1995) Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein βγ subunit complex. Proc Natl Acad Sci USA 92:7065–7069

    Google Scholar 

  • Dimmeler S, Lottspeich F, Brune B (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267:16771–16774

    Google Scholar 

  • Domenighini M, Montecucco C, Ripka WC, Rappuoli R (1991) Computer modelling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Mol Microbiol 5:23–31

    Google Scholar 

  • Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol 14:41–50

    Google Scholar 

  • Donadoni ML, Gavezzotti R, Borella F, De Giulio AM, Gorio A (1995) Experimental diabetic neuropathy. Inhibition of protein mono-ADP-ribosylation prevents reduction of substance P axonal transport. J Pharmacol Exp Ther 274:570–576

    Google Scholar 

  • Donnelly LE, Boyd RS, MacDermot J (1992) Gsα is a substrate for mono(ADP-ribosyl)transferase of NG108-15 cells. ADP-ribosylation regulates Gsα activity and abundance. Biochem J 288:331–336

    Google Scholar 

  • Douglas CM, Collier RJ (1987) Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid-553 with aspartic acid drastically reduces toxicity and enzymic activity. Infect Immun 169:4967–4971

    Google Scholar 

  • Doukas J, Mordes JP (1993) T lymphocytes capable of activating endothelial cells in vitro are present in rats with autoimmune diabetes. J Immunol 150:1036–1046

    Google Scholar 

  • Duman RS, Winston SM, Clark JA, Nestler EJ (1990) Corticosterone regulates the expression of ADP-ribosylation factor messenger RNA and protein in rat cerebral cortex. J Neurochem 55:1813–1816

    Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ (1991) Endogenous ADP-ribosylation in brain: initial characterization of substrate proteins. J Neurochem 57:2124–2132

    Google Scholar 

  • Ehret-Hilberer S, Nullans G, Aunis D, Virmaux N (1992) Mono-ADP-ribosylation of transducin catalyzed by rod outer segment extract. FEBS Lett 309:394–398

    Google Scholar 

  • Fangmann J, Schwinzer M, Winkler M, Wonigeit K (1990) Expression of RT6 alloantigens and the T-cell receptor on intestinal intraepithelial lymphocytes of the rat. Transplant Proc 22:2543–2544

    Google Scholar 

  • Feldman AM, Levine MA, Baughman KL, Van Dop C (1987) NAD+-mediated stimulation of adenylate cyclase in cardiac membranes. Biochem Biophys Res Commun 142:631–637

    Google Scholar 

  • Finco C, Abbracchio MP, Malosio ML, Cattabeni F, Di Giulio AM, Paternieri B, Mantegazza P, Gorio A (1992) Diabetes-induced alteration of central nervous system G proteins. ADP-ribosylation, immunoreactivity, and gene-expression studies in rat striatum. Mol Chem Neuropathol 17:259–272

    Google Scholar 

  • Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267:12168–12173

    Google Scholar 

  • Godeau F, Belin D, Koide SS (1984) Mono(adenosine diphosphate ribosyl) transferase in Xenopus tissues. Direct demonstration by a zymographic localization in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 137:287–296

    Google Scholar 

  • Gorio A, Donadoni ML, Di Giulio AM (1995) Nitric oxide-sensitive protein ADP-ribosylation is altered in rat diabetic neuropathy. J Neurosci Res 40:420–426

    Google Scholar 

  • Greiner DL, Handler ES, Nakano K, Mordes JP, Rossini AA (1986) Absence of the RT-6 T cell subset in diabetes-prone BB/W rats. J Immunol 136:148–151

    Google Scholar 

  • Greiner DL, Mordes JP, Handler ES, Angelillo M, Nakamura N, Rossini AA (1987) Depletion of RT6.1+ T lymphocytes induces diabetes in resistant Biobreeding/Worcestter (BB/W) rats. J Exp Med 166:461–475

    Google Scholar 

  • Grimaldi JC, Balasubramanian S, Kabra NH, Shanafelt A, Bazan JF, Zurawski G, Howard MC (1995) CD38-mediated ribosylation of proteins. J Immunol 155:811–817

    Google Scholar 

  • Haag F, Koch F, Thiele H-G (1990) Polymorphism between not T-cell alloantigens RT6.1 and RT6.2 is based on multiple amino acid substitutions. Transplant Proc 22:2541–2542

    Google Scholar 

  • Haag F, Nolte F, Hollmann C, Thiele H-C (1993) Analysis of the gene for the rat T-cell alloantigen RT6: evidence for alternative splicing in the 5′ region. Transplant Proc 25:2784–2785

    Google Scholar 

  • Haag F, Koch-Nolte F, Kuhl M, Lornezen S, Thiele H-G (1994) Premature stop codons inactivate the RT6 genes of the human and chimpanzee species. J Mol Biol 243:537–546

    Google Scholar 

  • Haag F, Andresen V, Karsten S, Koch-Nolte F, Thiele H-G (1995) Both allelic forms of the rat T cell differentiation marker RT6 display nicotinamide adenine dinucleotide (NAD)-glycohydrolase activity, yet only RT6.2 is capable of automodification upon incubation with NAD. Eur J Immunol 25:2355–2361

    Google Scholar 

  • Han XY, Galloway DR (1995) Active site mutations of Pseudomonas aeruginosa exotoxin A. Analysis of the His440 residue. J Biol Chem 270:679–684

    Google Scholar 

  • Hawkins DJ, Browning ET (1982) Tubulin adenosine diphosphate ribosylation is catalyzed by cholera toxin. Biochem 21:4474–4479

    Google Scholar 

  • Howard MC, Grimaldi JC Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RME, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059

    Google Scholar 

  • Jacobson MK, Loflin PT, Aboul-Ela N, Mingmuang M, Moss J, Jacobson EL (1990) Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J Biol Chem 265:10825–10828

    Google Scholar 

  • Johnson VG, Nicholls P (1994) Histidine-21 does not play a major role in diphtheria toxin catalysis. J Biol Chem 269:4349–4354

    Google Scholar 

  • Jung M, Just I, van Damme J, Vandekerckhove J, Aktories K (1993) NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum. J Biol Chem 268:23215–23218

    Google Scholar 

  • Just I, Wollenberg P, Moss J, Aktories K (1994) Cysteine-specific ADP-ribosylation of actin. Eur J Biochem 221:1047–1054

    Google Scholar 

  • Just I, Sehr P, Jung M, van Damme J, Puype M, Vandekerckhove J, Moss J, Aktories K (1995a) ADP-ribosyltransferase type A from turkey erythrocytes modifies actin at arg-95 and arg-372. Biochemistry 34:326–333

    Google Scholar 

  • Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K (1995b) Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. Biochem 34:334–340

    Google Scholar 

  • Kaslow HR, Schlotterbeck JD, Mar VL, Burnette NW (1989) Alkylation of cysteine 41, but not cysteine 200, decreases the ADP-ribosyltransferase activity of the S1 subunit of pertussis toxin. J Biol Chem 264:6386–6390

    Google Scholar 

  • Kessler SP, Galloway DR (1992) Pseudomonas aeruginosa Exotoxin A interaction with eucaryotic elongation factor 2. Role of the His426 residue. J Biol Chem 267:19107–19111

    Google Scholar 

  • Kharadia SV, Huiatt TW, Huang H-Y, Peterson JE, Graves DJ (1992) Effect of an arginine-specific ADP-ribosyltransferase inhibitor on differentiation of embryonic chick skeletal muscle cells in culture. Exp Cell Res 201:33–42

    Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Google Scholar 

  • Klebl BM, Matsushita S, Pette D (1994) Localization of an arginine-specific mono-ADP-ribosyltransferase in skeletal muscle sarcolemma and transverse tubules. FEBS Lett 342:66–70

    Google Scholar 

  • Knight DA, Finck-Barbancon V, Kulich SM, Barbieri JT (1995) Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immunol 63:3182–3186

    Google Scholar 

  • Koch F, Kashan A, Thiele H-G (1988) The rat T-cell differentiation marker RT6.1 is more polymorphic than its alloantigenic counterpart RT6.2. Immunology 65:259–265

    Google Scholar 

  • Koch F, Haag F, Kashan A, Thiele H-G (1990a) Primary structure of rat RT6.2, a non-glycosylated phosphatidylinositol-linked surface marker of postthymic T cells. Proc Natl Acad Sci USA 87:964–967

    Google Scholar 

  • Koch F, Haag F, Thiele H-G (1990b) Nucleotide and deduced amino acid sequence for the mouse homologue of the rat T-cell differentiation marker RT6. Nucleic Acids Res 18:3636

    Google Scholar 

  • Koch-Nolte F, Haag F, Kuhl M, van Heyningen V, Hoovers J, Grzeschik K-H, Singh S, Thiele H-G (1993) Assignment of the human RT6 gene to 11q13 by PCR screening of somatic cell hybrids and in situ hybridization. Genomics 18:404–406

    Google Scholar 

  • Koch-Nolte F, Hollmann C, Kuhl M, Haag F, Prochazka M, Leiter E, Thiele H-G (1995a) Molecular polymorphism in the Rt6 genes of laboratory mice correlates with the allotypes of the H1 minor histocompatability system. Immunogenetics 41:152–155

    Google Scholar 

  • Koch-Nolte F, Klein J, Hollmann C, Kuhl M, Haag F, Gaskins HR, Leiter E, Thiele H-G (1995b) Defects in the structure and expression of the genes for the T cell marker RT6 in NZW and (NZW X NZW)F1 mice. Internatl Immunol 7:883–890

    Google Scholar 

  • Koch-Nolte F, Petersen D, Balasubramanian S, Haag F, Kahlke D, Willer T, Kastelein R, Bazan F, Thiele H-G (1996) Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono (ADP-ribosyl) transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J Biol Chem 271:7686–7693

    Google Scholar 

  • Koch T, Ruger W (1994) The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products. Virology 203:294–298

    Google Scholar 

  • Kots AY, Skurat AV, Sergienko EA, Bulargina TV, Severin ES (1992) Nitroprusside stimulates the cysteine specific mono (ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300:9–12

    Google Scholar 

  • Kulich SM, Yahr TL, Mende-Mueller LM, Barbieri JT, Frank DW (1994) Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J Biol Chem 269:10431–10437

    Google Scholar 

  • Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL (1989) Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem 264:1608–1611

    Google Scholar 

  • Liu Y, Kahn ML (1995) ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J Biol Chem 270:1624–1628

    Google Scholar 

  • Lobet Y, Cluff CW, Cieplak W Jr (1991) Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infect Immun 59:2870–2879

    Google Scholar 

  • Ludden PW (1994) Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem 138:123–129

    Google Scholar 

  • Maehama T, Nishina H, Katada T (1994) ADP-ribosylarginine glycohydrolase catalyzing the release of ADP-ribose from the cholera toxin-modified α-subunits of GTP-binding proteins. J Biochem 116:1134–1138

    Google Scholar 

  • Maehama T, Nishina H, Hoshino S, Kanaho Y, Katada T (1995) NAD+-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes. J Biol Chem 270:22747–22751

    Google Scholar 

  • Marsischky GT, Ikejima M, Suzuki H, Sugimura T, Esumi H, Miwa M, Collier RJ (1992) Directed mutagenesis of glutamic acid 988 of poly(ADP-ribose) polymerase. In: Poirier GG, Moreau P (eds) ADP-ribosylation reactions. Springer, Berlin Heidelberg New York, pp 47–52

    Google Scholar 

  • Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M (1988) ADP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase. Biochem Biophys Acta 969:57–65

    Google Scholar 

  • Matsuyama S, Tsuyama S (1991) Mono-ADP-ribosylation in brain: purification and characterization of ADP-ribosyltransferases affecting actin from rat brain. J Neurochem 57:1380–1387

    Google Scholar 

  • McDonald LJ, Moss J (1993a) Nitric oxide-independent, thiol-associated ADP-ribosylation inactivates aldehyde dehydrogenase. J Biol Chem 268:17878–17882

    Google Scholar 

  • McDonald LJ, Moss J (1993b) Stimulation by nitric oxide of a novel linkage of NAD to glyceraldehyde 3-phosphate dehydrogenase. Proc Natl Acad Sci USA 90:6238–6241

    Google Scholar 

  • McDonald LJ, Moss J (1994) Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol Cell Biochem 138:221–226

    Google Scholar 

  • McDonald LJ, Wainschel LA, Oppenheimer NJ, Moss J (1992) Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. Biochem 31:11881–11887

    Google Scholar 

  • McMahon KK, Piron KJ, Ha VT, Fullerton AT (1993) Developmental and biochemical characteristics of the cardiac membrane-bound arginine-specific mono-ADP-ribosyltransferase. Biochem J 293:789–793

    Google Scholar 

  • Merritt EA, Sarfaty S, Pizza M, Domenighini M, Rappuoli R, Hol WGJ (1995) Mutation of a buried residue causes loss of activity but no conformational change in the heat-labile enterotoxin of Escherichia coli. Struct Biol 2:269–272

    Google Scholar 

  • Mishima K, Tsuchiya M, Tanigawa Y, Yoshimura Y, Shimoyama M (1989) DNA-dependent mono(ADP-ribosyl)ation of p33, an acceptor protein in hen liver nuclei. Eur J Biochem 179:267–273

    Google Scholar 

  • Mishima K, Terashima M, Obara S, Yamada K, Imai K, Shimoyama M (1991) Arginine-specific ADP-ribosyltransferase and its acceptor protein p33 in chicken polymor-phonuclear cells: co-localization in the cell granules, partial characterization, and in situ mono(ADP-ribosyl)ation. J Biochem 110:388–394

    Google Scholar 

  • Mojcik CF, Greiner DL, Medlock ES, Komschlies KL, Goldschneider I (1988) Characterization of RT6 bearing rat lymphocytes. I. Ontogeny of the RT6+ subset. Cell Immunol 114:336–346

    Google Scholar 

  • Molina y Vedia L, Nolan RD, Lapetina EG (1989) The effect of iloprost on the ADP-ribosylation of Gsα (the α-subunit of Gs). Biochem J 261:841–845

    Google Scholar 

  • Moss J, Stanley SJ (1981a) Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78:4809–4812

    Google Scholar 

  • Moss J, Stanley SJ (1981b) Amino acid-specific ADP-ribosylation. Identification of an arginine-dependent ADP-ribosyltransferase in rat liver. J Biol Chem 256:7830–7833

    Google Scholar 

  • Moss J, Vaughan M (1978) Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75:3621–3624

    Google Scholar 

  • Moss J, Vaughan M (1988) ADP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins. Adv Enzymol 61:303–379

    Google Scholar 

  • Moss J, Vaughan M (eds) (1990) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC

    Google Scholar 

  • Moss J, Vaughan M (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport process. J Biol Chem 270:12327–12330

    Google Scholar 

  • Moss J, Stanley SJ, Oppenheimer NJ (1979) Substrate specificity and partial purification of a stereospecific NAD-and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem 254:8891–8894

    Google Scholar 

  • Moss J, Stanley SJ, Watkins PA (1980) Isolation and properties of an NAD-and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255:5838–5840

    Google Scholar 

  • Moss J, Stanley SJ, Osborne JC Jr (1981) Effect of self-association on activity of an ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 256:11452–11456

    Google Scholar 

  • Moss J, Stanley SJ, Osborne JC Jr (1982) Activation of NAD:arginine ADP-ribosyltransferase by histone. J Biol Chem 257:1660–1663

    Google Scholar 

  • Moss J, Osborne JC Jr, Stanley SJ (1984a) Activation of an erythrocyte NAD:arginine ADP-ribosyltransferase by lysolecithin and nonionic and zwitterionic detergents. Biochemistry 23:1353–1357

    Google Scholar 

  • Moss J, Watkins PA, Stanley SJ, Purnell MR, Kidwell WR (1984b) Inactivation of glutamine synthetases by an NAD:arginine ADP-ribosyltransferase. J Biol Chem 259:5100–5104

    Google Scholar 

  • Moss J, Jacobson MK, Stanley SJ (1985) Reversibility of arginine-specific mono(ADP-ribosyl)ation: identification in erythrocytes of an ADP-ribose-l-arginine cleavage enzyme. Proc Natl Acad Sci USA 82:5603–5607

    Google Scholar 

  • Moss J, Oppenheimer NJ, West RE Jr, Stanley SJ (1986) Amino acid specific ADP-ribosylation: substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 25:5408–5414

    Google Scholar 

  • Moss J, Tsai S-C, Adamik R, Chen H-C, Stanley SJ (1988) Purification and characterization of ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 27:5819–5823

    Google Scholar 

  • Moss J, Stanley SJ, Levine RL (1990) Inactivation of bacterial glutamine synthetase by ADP-ribosylation. J Biol Chem 265:21056–21060

    Google Scholar 

  • Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr, Monaco L, Mishima K, Chen H-C, Williamson KC, Tsai S-C (1992) Molecular and Immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 267:10481–10488

    Google Scholar 

  • Moss J, Stanley SJ, Vaughan M, Tsuji T (1993) Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivation lysine 112 substitution. J Biol Chem 268:6383–6387

    Google Scholar 

  • Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257

    Google Scholar 

  • Nemoto Y, Namba T, Kozaki S, Narumiya S (1991) Clostridium botulinum C3 ADP-ribosyltransferase gene. Cloning sequencing, and expression of a functional protein in Escherichia coli. J Biol Chem 266:19312–19319

    Google Scholar 

  • Ness SA, Marknell A, Graf T (1989) The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell 59:1115–1125

    Google Scholar 

  • Nestler EJ, Terwilliger RZ, Duman RS (1995) Regulation of endogenous ADP-ribosylation by acute and chronic lithium in rat brain. J Neurochem 64:2319–2324

    Google Scholar 

  • Obara S, Yamada K, Yoshimura Y, Shimoyama M (1991) Evidence for the endogenous GTP-dependent ADP-ribosylation of the α-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Eur J Biochem 200:75–80

    Google Scholar 

  • Okazaki IJ, Zolkiewska A, Nightingale MS, Moss J (1994) Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry 33:12828–12836

    Google Scholar 

  • Okazaki IJ, Kim H-J, McElvaney G, Lesma E, Moss J (1996a) Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes. Blood, in press

    Google Scholar 

  • Okazaki IJ, Kim H-J, Moss J (1996b) A novel membrane-bound lymphoxyte ADP-ribosyltransferase cloned from Yac-1 cells. J Biol Chem, in press

    Google Scholar 

  • Oppenheimer NJ (1978) Structural determination and stereospecificity of the choleragen-catalyzed reaction of NAD+ with guanidines. J Biol Chem 253:4907–4910

    Google Scholar 

  • Osborne JC Jr, Stanley SJ, Moss J (1985) Kinetic mechanisms of two NAD:arginine ADP-ribosyltransferases: the soluble, salt-stimulated transferase from turkey erythrocytes and choleragen, a toxin from Vibrio cholera. Biochemistry 24:5235–5240

    Google Scholar 

  • Papini E, Schiavo G, Sandona D, Rappuoli R, Montecucco C (1989) Histidine 21 is at the NAD+ binding site of diphtheria toxin. J Biol Chem 264:12385–12388

    Google Scholar 

  • Papini E, Santucci A, Schiavo G, Domenighini M, Neri P, Rappuoli R, Montecucco R (1991) Tyr-65 is photolabelled by 8-azido adenine and 8-azido-adenosine at the NAD binding site of diphtheria toxin. J Biol Chem 266:2494–2498

    Google Scholar 

  • Pelham HRB (1991) Multiple targets for brefeldin A. Cell 67:449–451

    Google Scholar 

  • Peterson JE, Larew JS-A Graves DJ (1990) Purification and partial characterization of arginine-specific ADP-ribosyltransferase from skeletal muscle microsomal membranes. J Bio Chem 265:17062–17069

    Google Scholar 

  • Piron KJ, McMahon KK (1990) Localization and partial characterization of ADP-ribosylation products in hearts from adult and neonatal rats. Biochem J 270:591–597

    Google Scholar 

  • Pizza M, Bartoloni A, Prugnola A, Silvestri S, Rappuoli R (1988) Subunit S1 of pertussis toxin: mapping of the regions essential for ADP-ribosyltransferase activity. Proc Natl Acad Sci USA 85:7521–7525

    Google Scholar 

  • Pizza M, Domenighini M, Hol W, Giannelli V, Fontana MR, Giuliani MM, Magagnoli C, Peppoloni S, Manetti R, Rappuoli R (1994) Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis. Mol Microbiol 14:51–60

    Google Scholar 

  • Pozdnyakov N, Lloyd A, Reddy VN, Sitaramayya A (1993) Nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochem Biophys Res Commun 192:610–615

    Google Scholar 

  • Prochazka M, Leiter EH, Serreze DV, Coleman DL (1987) Three recessive loci required for insulin-dependent diabetes in nonobese diabetic mice. Science 237:286–289

    Google Scholar 

  • Prochazka M, Gaskins HR, Leiter EH, Koch-Nolte F, Haag F, Thiele H-G (1991) Chromosomal localization, DNA polymorphism, and expression of Rt-6, the mouse homologue of rat T-lymphocyte differentiation marker RT6. Immunogenetics 33:152–156

    Google Scholar 

  • Quist EE, Coyle DL, Vasan R, Satumitra N, Jacobson EL, Jacobson MK (1994) Modification of cardiac membrane adenylate cyclase activity and Gsα by NAD and endogenous ADP-ribosyltransferase. J Mol Cell Cardiol 26:251–160

    Google Scholar 

  • Raffaelli N, Scaife RM, Purich DL (1992) ADP-ribosylation of chicken red cell tubulin and inhibition of microtubule self-assembly in vitro by the NAD+-dependent avian ADP-ribosyltransferase. Biochem Biophys Res Commun 184:414–418

    Google Scholar 

  • Rankin PW, Jacobson EL, Benjamin RC, Moss J, Jacobson MK (1989) Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem 264:4312–4317

    Google Scholar 

  • Rappuoli R, Pizza M (1991) Structure and evolutionary aspects of ADP-ribosylating toxins. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, San Diego, pp 1–21

    Google Scholar 

  • Rigby M, Bortell R, Stevens LA, Moss J, Kanaitsuka T, Shigeta H, Mordes JP, Greiner DL, Rossini AA (1996) Rat RT6.2 and mouse Rt6 locus 1 are NAD:arginine ADP-ribosyltransferases with auto-ADP-ribosylation activity. J Immunol, 156:4259–4265

    Google Scholar 

  • Rosa JL, Perez JX, Ventura F, Tauler A, Gil J, Shimoyama M (1995) Role of the N-terminal region in covalent modification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: comparison of phosphorylation and ADP-ribosylation. Biochem J 309:119–125

    Google Scholar 

  • Rossini AA, Mordes JP, Greiner DL, Nakano K, Appel MC, Handler ES (1986) Spleen cell transfusion in the Bio-Breeding/Worcester rat. Prevention of diabetes, major histocompatability complex restriction, and long-term persistence of transfused cells. J Clin Invest 77:1399–1401

    Google Scholar 

  • Saito N, Guitart X, Hayward MD, Tallman JF, Duman RS, Nestler EJ (1989) Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc Natl Acad Sci USA 86:3906–3910

    Google Scholar 

  • Scaife RM, Wilson L, Purich DL (1992) Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization. Biochemistry 31:310–316

    Google Scholar 

  • Schering B, Barmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Google Scholar 

  • Schuman EM, Meffert MK, Schulman H, Madison DV (1994) An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci USA 91:11958–11962

    Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    Google Scholar 

  • Sheffler LA, Wink DA, Melilo G, Cox GW (1995) Characterization of nitric oxide-stimulated ADP-ribosylation of various proteins from the mouse macrophage cell line ANA-1 using sodium nitroprusside and the novel nitric oxide-donating compound diethlamine dinitric oxide. J Leukoc Biol 57:152–159

    Google Scholar 

  • Silman NJ, Carr NG, Mann NH (1995) ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 177:3527–3533

    Google Scholar 

  • Simonin F, Poch O, Delarue M, de Murcia G (1993) Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J Biol Chem 268:8529–8535

    Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BAM, Witholt B, Hol WGJ (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351:371–377

    Google Scholar 

  • Sixma TK, Kalk KH, van Zanten BAM, Dauter Z, Kingma J, Witholt B, Hol WGJ (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230:890–918

    Google Scholar 

  • Smith KP, Benjamin RC, Moss J, Jacobson MK (1985) Identification of enzymatic activities which process protein bound mono(ADP-ribose). Biochem Biophys Res Commun 126:136–142

    Google Scholar 

  • Soman G, Mickelson JR, Louis CF, Graves DJ (1984) NAD:guanidino group-specific mono-ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120:973–980

    Google Scholar 

  • Soman G, Haregewoin A, Hom RC, Finberg RW (1991) Guanidine group specific ADP-ribosyltransferase in murine cells. Biochem Biophys Res Commun 176:301–308

    Google Scholar 

  • Song WK, Wang W, Foster RF, Bielser DA, Kaufamn SJ (1992) H-36-alpha 7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J Cell Biol 117:643–657

    Google Scholar 

  • Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ (1994) The crystal structure of pertussis toxin. Structure 2:45–57

    Google Scholar 

  • Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membrane of bovine brain. J Biol Chem 259:13806–13813

    Google Scholar 

  • Takada T, Iida K, Moss J (1993) Cloning and site-directed mutagenesis of human ADP-ribosylarginine hydrolase. J Biol Chem 268:17837–17843

    Google Scholar 

  • Takada T, Iida K, Moss J (1994) Expression of NAD glycohydrolase activity by rat mammary adenocarcinoma cells transformed with rat T cell alloantigen RT6.2. J Biol Chem 269:9420–9423

    Google Scholar 

  • Takada T, Iida K, Moss J (1995) Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. J Biol Chem 270:541–544

    Google Scholar 

  • Takenaka S, Nakano Y, Tsuyama S (1994) Mono-ADP-ribosylation of microtubule-associated protein 2 that inhibits polymerization of rat brain microtubules. In: The 11th international symposium on ADP-ribosylation. DNA repair, signal transduction. Abstract no 56. Strasbourg-Bischenberg, France

    Google Scholar 

  • Tamir A, Gill D (1988) ADP-ribosylation by cholera toxin of membranes derived from brain modifies the interaction of adenylate cyclase with guanine nucleotides and NaF. J Neurochem 50:1791–1797

    Google Scholar 

  • Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1983a) Mono(ADP-ribosyl)ation of hen liver nuclear proteins suppresses phosphorylation. Biochem Biophys Res Commun 113:135–141

    Google Scholar 

  • Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1983b) ADP-ribosylation regulates the phosphorylation of histones by the catalytic subunit of cyclic AMP-dependent protein kinase. FEBS Lett 160:217–220

    Google Scholar 

  • Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1984) ADP-ribosyltransferase from hen liver nuclei. J Biol Chem 259:2022–2029

    Google Scholar 

  • Tanuma S, Endo H (1990) Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett 261:381–384

    Google Scholar 

  • Tanuma S, Kawashima K, Endo H (1987) An NAD:cysteine ADP-ribosyltransferase is present in human erythrocytes. J Biochem 101:821–824

    Google Scholar 

  • Tanuma S, Kawashima K, Endo H (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 263:5485–5489

    Google Scholar 

  • Terashima M, Mishima K, Yamada K, Tsuchiya M, Wakutani T, Shimoyama M (1992) ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur J Biochem 204:305–311

    Google Scholar 

  • [Terashima M, Yamamori C, Shimoyama M (1995) ADP-ribosylation of Arg28 and Arg206 on the actin molecule by chicken arginine-specific ADP-ribosyltransferase. Eur J Biochem 231:242–249]

    Google Scholar 

  • Thiele H-G, Koch F, Hamann A, Arndt R (1986) Biochemical characterization of the T-cell alloantigen RT6.2. Immunology 59:195–201

    Google Scholar 

  • Thiele H-G, Koch F, Kashan A (1987) Postnatal distribution profiles of Thy-1+ and RT6+ cells in peripheral lymph nodes of DA-rats. Transplant Proc 19:3157–3160

    Google Scholar 

  • Thiele H-G, Haag F, Nolte F (1993) Asymmetric expression of RT6.1 and RT6.2 alloantigens in (RT6a X RT6b)F1 rats is due to a pretranslational mechanism. Transplant Proc 25:2786–2788

    Google Scholar 

  • Tsai S-C, Adamik R, Moss J, Vaughan M, Manne V, Kung H-F (1985) Effects of phospholipids and ADP-ribosylation on GTP hydrolysis by Escherichia coli-synthesized Ha-ras-encoded p21. Proc Natl Acad Sci USA 82:8310–8314

    Google Scholar 

  • Tsai S-C, Adamik R, Haun RS, Moss J, Vaughan M (1993) Effects of brefeldin A and accessory proteins on association of ADP-ribosylation factors 1, 3, and 5 with Golgi. J Biol Chem 268:10820–10825

    Google Scholar 

  • Tsuchiya M, Tanigawa Y, Ushiroyama T, Matsuura R, Shimoyama M (1985) ADP-ribosylation of phosphorylase kinase and block of phosphate incorporation into the enzyme. Eur J Biochem 147:33–40

    Google Scholar 

  • Tsuchiya M, Hara N, Yamada K, Osago H, Shimoyama M (1994) Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J Biol Chem 269:27451–27457

    Google Scholar 

  • Tsuchiya M, Osago H, Shimoyama M (1995) A newly identified GPI-anchored arginine-specific ADP-ribosyltransferase activity in chicken spleen. Biochem Biophys Res Commun 214:760–764

    Google Scholar 

  • Tsuji T, Inoue T, Miyama A, Okamoto K, Honda T, Miwatani T (1990) A single amino acid substitution in the A subunit of Escherichia coli enterotoxin results in a loss of its toxic activity. J Biol Chem 265:22520–22525

    Google Scholar 

  • Tweten RK, Barbieri JT, Collier RJ (1985) Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J Biol Chem 260:10392–10394

    Google Scholar 

  • Uchikoshi F, Ito T, Kamiike W, Moriguchi A, Nozaki S, Ito A, Kuhara A, Miyata M, Matsuda H, Miyasaka M, Nakao H, Makino S, Nozawa M (1995) Appearance of immunoregulatory RT6+ T cells after successful pancreas transplantation in diabetic BB rats. Transplant Proc 27:599–601

    Google Scholar 

  • Ui M (1990) Pertussis toxin as a valuable probe for G-protein involvement in signal transduction. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 45–77

    Google Scholar 

  • Uroshiyama T, Tanigawa Y, Tsuchiya M, Matsuura R, Ueki M, Sugimoto O, Shimoyama M (1985) Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose histone-H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. Eur J Biochem 151:173–177

    Google Scholar 

  • Vandekerckhove J, Schering B, Barmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Google Scholar 

  • Vandekerckhove J, Schering B, Barmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic βγ-actin in arginine 177. J Biol Chem 263:696–700

    Google Scholar 

  • Wang J, Nemoto E, Kots AY, Kaslow HR, Dennert G (1994) Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyltransferase. J Immunol 153:4048–4058

    Google Scholar 

  • Wang J, Nemoto E, Dennert G (1996) Regulation of CTL by ectonicotinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein. J Immunol 156:2819–2827

    Google Scholar 

  • Watkins PA, Moss J (1982) Effects of nucleotides on activity of a purified ADP-ribosyltransferase from turkey erythrocytes. Arch Biochem Biophys 216:74–80

    Google Scholar 

  • Watkins PA, Kanoho Y Moss J (1987) Inhibition of the GTP-ase activity of transducin by an NAD+: arginine ADP-ribosyltransferase from turkey erythrocytes. Biochem J 248:749–754

    Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    Google Scholar 

  • Welsh CF, Moss J, Vaughan M (1994) ADP-ribosylation factors: a family of } 20-kDa guanine nucleotide-binding proteins that activate cholera toxin. Mol Cell Biochem 138:157–166

    Google Scholar 

  • West RE Jr, Moss J (1986) Amino acid specific ADP-ribosylation: specific NAD:arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. Biochemistry 25:8057–8062

    Google Scholar 

  • Wick MJ, Iglewski BH (1990) Pseudomonas aeruginosa exotoxin A. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 31–43

    Google Scholar 

  • Williamson KC, Moss J (1990) Mono-ADP-ribosyltransferases and ADP-ribosylarginine hydrolases: a mono-ADP-ribosylation cycle in animal cells. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 493–510

    Google Scholar 

  • Wilson BA, Blanke SR, Reich KA, Collier RJ (1994) Active-site mutations of diphtheria toxin. J Biol Chem 269:23296–23301

    Google Scholar 

  • Wozniak DJ, Hsu L-H, Galloway DR (1988) His-426 of the Pseudomonas aeruginosa exotoxin A is required for ADP-ribosylation of elongation factor II. Proc Natl Acad Sci USA 85:8880–8884

    Google Scholar 

  • Xu Y, Barbancon-Finck V, Barbieri JT (1994) Role of histidine 35 of the S1 subunit of pertussis toxin in the ADP-ribosylation of Transducin. J Biol Chem 269:9993–9999

    Google Scholar 

  • Yamada K, Tsuchiya M, Mishima K, Shimoyama M (1992) p33, and endogenous target protein for arginine-specific ADP-ribosyltransferase in chicken polymorphonuclear leukocytes, is highly homologous to mim-1 protein (myb-induced myeloid protein-1). FEBS Lett 311:203–205

    Google Scholar 

  • Yamada K, Tsuchiya M, Nishikori Y, Shimoyama M (1994) Automodification of arginine-specific ADP-ribosyltransferase purified from chicken peripheral heterophils and alteration of the transferase activity. Arch Biochem Biophys 308:31–36

    Google Scholar 

  • [Yost DA, Moss J (1983) Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem 258:4926–4929]

    Google Scholar 

  • Zoche M, Koch K-W (1995) Purified retinal nitric oxide synthase enhances ADP-ribosylation of rod outer segment proteins. FEBS Lett 357:178–182

    Google Scholar 

  • Zolkiewska A, Moss J (1993) Integrin α7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 268:25273–25276

    Google Scholar 

  • Zolkiewska A, Moss J (1995) Processing of ADP-ribosylated integrin 7 in skeletal muscle myotubes. J Biol Chem 270:9227–9233

    Google Scholar 

  • Zolkiewska A, Nightingale MS, Moss J (1992) Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89:11352–11356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Okazaki, I.J., Moss, J. (1996). Structure and function of eukaryotic mono-ADP-ribosyltransferases. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 129. Reviews of Physiology Biochemistry and Pharmacology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61435-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-61435-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61435-7

  • Online ISBN: 978-3-540-68539-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics